Free Access
Issue
ESAIM: PS
Volume 17, 2013
Page(s) 550 - 566
DOI https://doi.org/10.1051/ps/2011162
Published online 01 August 2013
  1. J. Amendinger, Initial Enlargement of Filtrations and Additional Information in Financial Markets. Ph.D. thesis, Technischen Universität Berlin (1999). [Google Scholar]
  2. S. Ankirchner, S. Dereich and P. Imkeller, Elargement of filtrations, continuous Girsanov-type embeddings, Séminaire de probabilités XL (2007) 389–410. [Google Scholar]
  3. J. Azéma, Quelques applications de la théorie générale des processus, Invent. Math. 18 (1972). 293–336. [CrossRef] [MathSciNet] [Google Scholar]
  4. M.T. Barlow, Study of filtration expanded to include an honest time. Z. Wahr. Verw. Gebiete 44 (1978) 307–323. [CrossRef] [Google Scholar]
  5. T.R. Bielecki, M. Jeanblanc and M. Rutkowski, Credit Risk Modeling. CSFI Lect. Note Series. Osaka University Press (2009). [Google Scholar]
  6. P. Brémaud, Point Processes and Queues: Martingale Dynamics. Springer-Verlag (1981). [Google Scholar]
  7. C.S. Chou and P.-A. Meyer, Sur la représentation des martingales comme intégrales stochastiques dans les processus ponctuels. Séminaire de probabilités IX (1975) 226–236. [Google Scholar]
  8. C. Dellacherie and P.-A. Meyer, Probabilités et Potentiel – Chapitres XXVII à XXIV, Processus de Markov. Hermann, Paris (1992). [Google Scholar]
  9. N. El Karoui, M. Jeanblanc and Y. Jiao, What happens after a default: the conditional density approach. Stoch. Proc. Appl. 120 (2010) 1011–1032. [CrossRef] [Google Scholar]
  10. H. Föllmer and P. Imkeller, Anticipation cancelled by a Girsanov transformation: a paradox on Wiener space. Ann. Inst. Henri Poincaré 29 (1993) 569–586. [Google Scholar]
  11. D. Gasbarra, E. Valkeila and L. Vostrikova, Enlargement of filtration and additional information in pricing models: Bayesian approach, in From Stochastic Calculus to Mathematical Finance, edited by Y. Kabanov, R. Liptser and J. Stoyanov. Springer-Verlag (2006) 257–285. [Google Scholar]
  12. A. Grorud and M. Pontier, Insider trading in a continuous time market model. Int. J. Theor. Appl. Finance 1 (1998) 331–347. [CrossRef] [Google Scholar]
  13. A. Grorud and M. Pontier, Asymmetrical information and incomplete markets. Int. J. Theor. Appl. Finance 4 (2001) 285–302. [CrossRef] [MathSciNet] [Google Scholar]
  14. Sh. He, J. Wang and J. Yan, Semimartingale theory and stochastic calculus. CRC Press (1992). [Google Scholar]
  15. J. Jacod, Grossissement initial, hypothèse (H′) et théorème de Girsanov, Lect. Notes Math., vol. 1118. Springer-Verlag (1985) 15–35. [Google Scholar]
  16. M. Jeanblanc and Y. Le Cam, Progressive enlargement of filtrations with initial times. Stoch. Proc. Appl. 119 (2009) 2523–2543. [CrossRef] [Google Scholar]
  17. M. Jeanblanc and Y. Le Cam, Immersion Property and Credit Risk Modelling, in Optimality and Risk – Modern Trends in Mathematical Finance, edited by F. Delbaen, M. Rásonyi and C. Stricker. Springer (2010) 99–132. [Google Scholar]
  18. M. Jeanblanc, M. Yor and M. Chesney, Mathematical Methods in Financial Markets. Springer (2009). [Google Scholar]
  19. T. Jeulin, Semimartingales et grossissement d’une filtration, Lect. Notes Math., vol. 833. Springer-Verlag (1980). [Google Scholar]
  20. Y. Kchia, M. Larsson and P. Protter, Linking progressive and initial filtration expansions, Working paper. [Google Scholar]
  21. S. Kusuoka, A remark on default risk models, Adv. Math. Econ. 1 (1999) 69–82. [CrossRef] [Google Scholar]
  22. Sh. Song, Grossissement de filtration et problèmes connexes. Ph.D. thesis, Université Paris VI (1987). [Google Scholar]
  23. C. Stricker, Quasi-martingales, martingales locales et filtrations naturelles. Zeitschrift fur Wahr 39 (1977) 55–63. [CrossRef] [Google Scholar]
  24. C. Stricker and M. Yor, Calcul stochastique dépendant d’un paramètre. Zeitschrift fur Wahr 45 (1978) 109–133. [CrossRef] [Google Scholar]
  25. M. Yor, Grossissement de filtrations et absolue continuité de noyaux, Lect. Notes Math., vol. 1118. Springer-Verlag (1985) 7–14. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.