Free Access
Volume 17, 2013
Page(s) 635 - 649
Published online 04 November 2013
  1. B. Afsari, Riemannian Lp center of mass: existence, uniqueness, and convexity. Proc. Amer. Math. Soc. 139 (2011) 655–673. [Google Scholar]
  2. R. Bhattacharya and V. Patrangenaru, Large sample theory of intrinsic and extrinsic sample means on manifolds, I. Ann. Stat. 31 (2003) 1–29. [Google Scholar]
  3. R.S. Buss and J.P. Fillmore, Spherical averages and applications to spherical splines and interpolation. ACM Trans. Graph. 20 (2001) 95–126. [CrossRef] [Google Scholar]
  4. J.M. Corcuera and W.S. Kendall, Riemannian barycentres and geodesic convexity. Math. Proc. Cambridge Philos. Soc. 127 (1999) 253–269. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Émery and G. Mokobodzki, Sur le barycentre d’une probabilité dans une variété, in Séminaire de Probabilités, XXV, vol. 1485 of Lect. Notes Math. (1991) 220–233. [Google Scholar]
  6. N.I. Fisher, Statistical analysis of circular data. Cambridge University Press, Cambridge (1993). [Google Scholar]
  7. M. Fréchet, Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. Henri Poincaré 10 (1948) 215–310. [Google Scholar]
  8. H. Karcher, Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30 (1977) 509–541. [CrossRef] [Google Scholar]
  9. D. Kaziska and A. Srivastava, The karcher mean of a class of symmetric distributions on the circle. Stat. Probab. Lett. 78 (2008) 1314–1316 (2008). [CrossRef] [Google Scholar]
  10. D.G. Kendall, D. Barden, T.K. Carne and H. Le, Shape and shape theory. Wiley Series in Probability and Statistics. John Wiley & Sons Ltd., Chichester (1999). [Google Scholar]
  11. H. Le, On the consistency of procrustean mean shapes. Adv. Appl. Probab. 30 (1998) 53–63. [CrossRef] [Google Scholar]
  12. H. Le, Locating Fréchet means with application to shape spaces. Adv. Appl. Probab. 33 (2001) 324–338. [CrossRef] [Google Scholar]
  13. H. Le, Estimation of Riemannian barycentres. LMS J. Comput. Math. 7 (2004) 193–200. [CrossRef] [MathSciNet] [Google Scholar]
  14. K.V. Mardia and P.E. Jupp, Directional statistics. Wiley Series in Probability and Statistics. John Wiley & Sons Ltd., Chichester (2000). Revised reprint of ıt Statistics of directional data by Mardia [ MR0336854 (49 #1627)]. [Google Scholar]
  15. P. Massart, The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18 (1990) 1269–1283. [CrossRef] [MathSciNet] [Google Scholar]
  16. J.M. Oller and J.M. Corcuera, Intrinsic analysis of statistical estimation. Ann. Statist. 23 (1995) 1562–1581. [CrossRef] [MathSciNet] [Google Scholar]
  17. X. Pennec, Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. J. Math. Imaging Vision 25 (2006) 127–154. [CrossRef] [MathSciNet] [Google Scholar]
  18. H. Ziezold, On expected figures and a strong law of large numbers for random elements in quasi-metric spaces, in Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes and of the Eighth European Meeting of Statisticians (Tech. Univ. Prague, Prague, 1974). Reidel, Dordrecht (1977) 591–602. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.