Free Access
Issue |
ESAIM: PS
Volume 17, 2013
|
|
---|---|---|
Page(s) | 70 - 104 | |
DOI | https://doi.org/10.1051/ps/2011109 | |
Published online | 18 December 2012 |
- D. Boivin, Ergodic theorems for surfaces with minimal random weights. Ann. Inst. Henri Poincaré Probab. Stat. 34 (1998) 567–599. [CrossRef] [Google Scholar]
- B. Bollobás, Graph theory. An introductory course, edited by Springer-Verlag, New York. Graduate Texts in Mathematics 63 (1979). [CrossRef] [Google Scholar]
- R. Cerf, The Wulff crystal in Ising and percolation models, in École d’Été de Probabilités de Saint Flour, edited by Springer-Verlag. Lect. Notes Math. 1878 (2006). [Google Scholar]
- R. Cerf and M. Théret, Law of large numbers for the maximal flow through a domain of Rd in first passage percolation. Trans. Amer. Math. Soc. 363 (2011) 3665–3702. [CrossRef] [MathSciNet] [Google Scholar]
- R. Cerf and M. Théret, Lower large deviations for the maximal flow through a domain of Rd in first passage percolation. Probab. Theory Relat. Fields 150 (2011) 635–661 [CrossRef] [Google Scholar]
- R. Cerf and M. Théret, Upper large deviations for the maximal flow through a domain of Rd in first passage percolation. To appear in Ann. Appl. Probab., available from arxiv.org/abs/0907.5499 (2009c). [Google Scholar]
- J. T. Chayes and L. Chayes, Bulk transport properties and exponent inequalities for random resistor and flow networks. Commun. Math. Phys. 105 (1986) 133–152. [CrossRef] [Google Scholar]
- O. Garet, Capacitive flows on a 2d random net. Ann. Appl. Probab. 19 (2009) 641–660. [CrossRef] [MathSciNet] [Google Scholar]
- G. Grimmett and H. Kesten, First-passage percolation, network flows and electrical resistances. Z. Wahrsch. Verw. Gebiete 66 (1984) 335–366. [CrossRef] [MathSciNet] [Google Scholar]
- J.M. Hammersley and D.J.A. Welsh, First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory, in Proc. Internat. Res. Semin., Statist. Lab. Univ. California, Berkeley, Calif. Springer-Verlag, New York (1965) 61–110. [Google Scholar]
- H. Kesten, Aspects of first passage percolation, in École d’été de probabilités de Saint-Flour, XIV–1984, edited by Springer, Berlin. Lect. Notes Math. 1180 (1986) 125–264. [CrossRef] [Google Scholar]
- H. Kesten, Surfaces with minimal random weights and maximal flows : a higher dimensional version of first-passage percolation. Illinois J. Math. 31 (1987) 99–166. [MathSciNet] [Google Scholar]
- R. Rossignol and M. Théret, Law of large numbers for the maximal flow through tilted cylinders in two-dimensional first passage percolation. Stoc. Proc. Appl. 120 (2010) 873–900. [CrossRef] [Google Scholar]
- R. Rossignol and M. Théret, Lower large deviations and laws of large numbers for maximal flows through a box in first passage percolation. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010) 1093–1131. [CrossRef] [MathSciNet] [Google Scholar]
- M. Théret, Upper large deviations for the maximal flow in first-passage percolation. Stoc. Proc. Appl. 117 (2007) 1208–1233. [Google Scholar]
- M. Théret, On the small maximal flows in first passage percolation. Ann. Fac. Sci. Toulouse 17 (2008) 207–219. [CrossRef] [MathSciNet] [Google Scholar]
- M. Théret, Grandes déviations pour le flux maximal en percolation de premier passage. Ph.D. thesis, Université Paris Sud (2009a). [Google Scholar]
- M. Théret, Upper large deviations for maximal flows through a tilted cylinder. To appear in ESAIM : Probab. Stat., available from arxiv.org/abs/0907.0614 (2009b). [Google Scholar]
- Y. Zhang, Critical behavior for maximal flows on the cubic lattice. J. Stat. Phys. 98 (2000) 799–811. [CrossRef] [Google Scholar]
- Y. Zhang, Limit theorems for maximum flows on a lattice. Available from arxiv.org/abs/0710.4589 (2007). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.