Free Access
Volume 17, 2013
Page(s) 105 - 119
Published online 08 February 2013
  1. B. Arouna, Adaptative Monte Carlo method, a variance reduction technique. Monte Carlo Methods Appl. 10 (2004) 1–24. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Benveniste, M. Métivier and P. Priouret, Adaptive algorithms and stochastic approximations. Springer-Verlag, Berlin. Appl. Math. 22 (1990). Translated from the French by Stephen S. Wilson. [Google Scholar]
  3. C. Bouton, Approximation Gaussienne d’algorithmes stochastiques à dynamique Markovienne. Ph.D. Thesis, Université Pierre et Marie Curie, Paris 6 (1985). [Google Scholar]
  4. R. Buche and H.J. Kushner, Rate of convergence for constrained stochastic approximation algorithms. SIAM J. Control Optim. 40 (2001) 1011–1041 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  5. H.-F. Chen, Stochastic approximation and its applications, Kluwer Academic Publishers, Dordrecht. Nonconvex Optim. Appl. 64 (2002). [Google Scholar]
  6. H. Chen and Y. Zhu, Stochastic Approximation Procedure with randomly varying truncations. Scientia Sinica Series (1986). [Google Scholar]
  7. B. Delyon, General results on the convergence of stochastic algorithms. IEEE Trans. Automat. Contr. 41 (1996) 1245–1255. [CrossRef] [Google Scholar]
  8. M. Duflo, Algorithmes stochastiques (Mathématiques et Applications). Springer (1996). [Google Scholar]
  9. M. Duflo, Random Iterative Models. Springer-Verlag Berlin and New York (1997). [Google Scholar]
  10. H.J. Kushner and G.G. Yin, Stochastic approximation and recursive algorithms and applications, Applications of Mathematics. Springer-Verlag, New York, 2nd edition 2003. Stoch. Model. Appl. Probab. 35 (2003). [Google Scholar]
  11. B. Lapeyre and J. Lelong, A framework for adaptive Monte–Carlo procedures. Monte Carlo Methods Appl. (2011). [Google Scholar]
  12. J. Lelong, Almost sure convergence of randomly truncated stochastic agorithms under verifiable conditions. Stat. Probab. Lett. 78 (2009). [Google Scholar]
  13. V. Lemaire and G. Pagès, Unconstrained Recursive Importance Sampling. Ann. Appl. Probab. 20 (2010) 1029–1067. [CrossRef] [Google Scholar]
  14. M. Pelletier, Weak convergence rates for stochastic approximation with application to multiple targets and simulated annealing. Ann. Appl. Probab. 8 (1998) 10–44. [CrossRef] [MathSciNet] [Google Scholar]
  15. H. Robbins and S. Monro, A stochastic approximation method. Ann. Math. Statistics 22 (1951) 400–407. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.