Volume 15, 2011
Supplement: In honor of Marc Yor
Page(s) S58 - S68
Published online 19 May 2011
  1. D.J. Aldous, Exchangeability and related topics. École d'été de Probabilités de Saint-Flour XIII. LNM 1117, Springer, New York (1983). [Google Scholar]
  2. M. Bloznelis, Orthogonal decomposition of symmetric functions defined on random permutations. Combin. Probab. Comput. 14 (2005) 249–268. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Bloznelis and F. Götze, Orthogonal decomposition of finite population statistics and its applications to distributional asymptotics. Ann. Stat. 29 (2001) 353–365. [Google Scholar]
  4. M. Bloznelis and F. Götze, An Edgeworth expansion for finite population statistics. Ann. Probab. 30 (2002) 1238–1265. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. Diaconis, Group Representations in Probability and Statistics. IMS Lecture Notes – Monograph Series 11, Hayward, California (1988). [Google Scholar]
  6. J.J. Duistermaat and J.A.C. Kolk, Lie groups. Springer-Verlag, Berlin-Heidelberg-New York (1997). [Google Scholar]
  7. O. El-Dakkak and G. Peccati, Hoeffding decompositions and urn sequences. Ann. Probab. 36 (2008) 2280–2310. [CrossRef] [MathSciNet] [Google Scholar]
  8. G.D. James, The representation theory of the symmetric groups. Lecture Notes in Math. 682, Springer-Verlag, Berlin-Heidelberg-New York (1978). [Google Scholar]
  9. G. Peccati, Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations. Ann. Probab. 32 (2004) 1796–1829. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Peccati and J.-R. Pycke, Decompositions of stochastic processes based on irreducible group representations. Theory Probab. Appl. 54 (2010) 217–245. [CrossRef] [MathSciNet] [Google Scholar]
  11. B.E. Sagan, The Symmetric Group. Representations, Combinatorial Algorithms and Symmetric Functions, 2nd edition. Springer, New York (2001). [Google Scholar]
  12. R.J. Serfling, Approximation Theorems of Mathematical Statistics. Wiley, New York (1980). [Google Scholar]
  13. J.-P. Serre, Linear representations of finite groups, Graduate Texts Math. 42, Springer, New York (1977). [Google Scholar]
  14. L. Zhao and X. Chen, Normal approximation for finite-population U-statistics. Acta Math. Appl. Sinica 6 (1990) 263–272. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.