Issue
ESAIM: PS
Volume 15, 2011
Supplement: In honor of Marc Yor
Page(s) S58 - S68
DOI https://doi.org/10.1051/ps/2010022
Published online 19 May 2011
  1. D.J. Aldous, Exchangeability and related topics. École d'été de Probabilités de Saint-Flour XIII. LNM 1117, Springer, New York (1983).
  2. M. Bloznelis, Orthogonal decomposition of symmetric functions defined on random permutations. Combin. Probab. Comput. 14 (2005) 249–268. [CrossRef] [MathSciNet]
  3. M. Bloznelis and F. Götze, Orthogonal decomposition of finite population statistics and its applications to distributional asymptotics. Ann. Stat. 29 (2001) 353–365.
  4. M. Bloznelis and F. Götze, An Edgeworth expansion for finite population statistics. Ann. Probab. 30 (2002) 1238–1265. [CrossRef] [MathSciNet]
  5. P. Diaconis, Group Representations in Probability and Statistics. IMS Lecture Notes – Monograph Series 11, Hayward, California (1988).
  6. J.J. Duistermaat and J.A.C. Kolk, Lie groups. Springer-Verlag, Berlin-Heidelberg-New York (1997).
  7. O. El-Dakkak and G. Peccati, Hoeffding decompositions and urn sequences. Ann. Probab. 36 (2008) 2280–2310. [CrossRef] [MathSciNet]
  8. G.D. James, The representation theory of the symmetric groups. Lecture Notes in Math. 682, Springer-Verlag, Berlin-Heidelberg-New York (1978).
  9. G. Peccati, Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations. Ann. Probab. 32 (2004) 1796–1829. [CrossRef] [MathSciNet]
  10. G. Peccati and J.-R. Pycke, Decompositions of stochastic processes based on irreducible group representations. Theory Probab. Appl. 54 (2010) 217–245. [CrossRef] [MathSciNet]
  11. B.E. Sagan, The Symmetric Group. Representations, Combinatorial Algorithms and Symmetric Functions, 2nd edition. Springer, New York (2001).
  12. R.J. Serfling, Approximation Theorems of Mathematical Statistics. Wiley, New York (1980).
  13. J.-P. Serre, Linear representations of finite groups, Graduate Texts Math. 42, Springer, New York (1977).
  14. L. Zhao and X. Chen, Normal approximation for finite-population U-statistics. Acta Math. Appl. Sinica 6 (1990) 263–272. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.