Issue
ESAIM: PS
Volume 15, 2011
Supplement: In honor of Marc Yor
Page(s) S39 - S57
DOI https://doi.org/10.1051/ps/2010026
Published online 19 May 2011
  1. K. Bichteler, Stochastic integration with jumps. Cambridge University Press (2002). [Google Scholar]
  2. K. Ciesielski, How good is Lebesgue measure? Math. Intell. 11 (1989) 54–58. [CrossRef] [Google Scholar]
  3. C. Dellacherie and P.-A. Meyer, Un nouveau théorème de projection et de section, in Séminaire de Probabilités XXVI. Lecture Notes in Math. 1526. Springer (1975) 239–245. [Google Scholar]
  4. C. Dellacherie and P.-A. Meyer, Probabilités et potentiel, Volume 1. Hermann, Paris (1976). [Google Scholar]
  5. C. Dellacherie and P.-A. Meyer, Probabilités et potentiel, Volume 2. Hermann, Paris (1980). [Google Scholar]
  6. H. Föllmer, The exit measure of a supermartingale. Z. Wahrscheinlichkeitstheorie verw. Geb. 21 (1972) 154–166. [Google Scholar]
  7. H. Föllmer and P. Imkeller, Anticipation cancelled by a Girsanov transformation: a paradox on Wiener space. Ann. Inst. H. Poincaré 29 (1993) 569–586. [Google Scholar]
  8. J. Jacod and A. Shiryaev, Limit theorems for stochastic processes. 2nd edition. Springer (2003). [Google Scholar]
  9. K.R. Parthasarathy, Probability measures on metric spaces. Academic Press, New York (1967). [Google Scholar]
  10. D.-W. Stroock and S.-R.-S. Varadhan, Multidimensional diffusion processes, Classics in Mathematics. Springer-Verlag, Berlin (2006). Reprint of the 1997 edition. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.