Free Access
Issue
ESAIM: PS
Volume 15, 2011
Page(s) 291 - 319
DOI https://doi.org/10.1051/ps/2010004
Published online 05 January 2012
  1. V. Beneš and J. Rataj, Stochastic Geometry: Selected Topics. Kluwer, Dordrecht (2004).
  2. D.J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes. Elementary Theory and Methods. Springer, New York (2002) Vol. 1.
  3. D. Dawson, Measure-Valued Markov Processes. Lect. Notes Math. 1541 (1991).
  4. I.I. Gikhman and A.V. Skorokhod, Stochastic Differential Equations and Their Applications. Naukova Dumka, Kiev (1982) (Russian).
  5. P. Hall, Introduction to the Theory of Coverage Processes. Wiley, New York (1988).
  6. P.J. Huber, Robust Statistics. Wiley, New York (1981).
  7. J. Jacod and A.N. Shiryaev, Limit Theorems for Stochastic Processes. Springer, Berlin (1987).
  8. O. Kallenberg, Random Measures. Academic Press, New York, London; Akademie-Verlag, Berlin (1988).
  9. A.N. Kolmogorov, On the statistical theory of metal crystallization. Izvestiya Akademii Nauk SSSR [Bull. Acad. Sci. USSR] (1937), Issue 3, 355–359 (Russian) [ English translation in: Selected Works of A.N. Kolmogorov, Probability Theory and Mathematical Statistics. Springer, New York (1992), Vol. 2, 188–192.
  10. D.L. McLeish, An extended martingale principle. Ann. Prob. 6 (1978) 144–150. [CrossRef]
  11. Yu. V. Prokhorov, Convergence of random processes and limit theorems in probability theory. Th. Prob. Appl. 1 (1956) 157–214. [CrossRef]
  12. A.N. Shiryaev, Probability. Springer, Berlin (1996)
  13. A.V. Skorokhod, Limit theorems for stochastic processes. Th. Prob. Appl. 1 (1956) 261–290. [CrossRef]
  14. A.V. Skorokhod, Studies in the Theory of Random Processes. McGraw–Hill, New York (1965).
  15. A.V. Skorokhod, Stochastic Equations for Complex Systems. Kluwer, Dordrecht (1987).
  16. D. Stoyan, W.S. Kendall and J. Mecke, Stochastic Geometry and Its Applications. Akademie-Verlag, Berlin (1987).
  17. N.N. Vakhania, V.I. Tarieladze and S.A Chobanian, Probability Distributions in Banach Spaces. Reidel Pub. Co., Dordrecht-Boston (1987).
  18. A.P. Yurachkivsky, Covariance-characteristic functions of random measures and their applications to stochastic geometry. Dopovidi Natsionalnoĭi Akademii Nauk Ukrainy (1999), Issue 5, 49–54.
  19. A.P. Yurachkivsky, Some applications of stochastic analysis to stochastic geometry. Th. Stoch. Proc. 5 (1999) 242–257.
  20. A.P. Yurachkivsky, Covaristic functions of random measures and their applications. Th. Prob. Math. Stat. 60 (2000) 187–197.
  21. A.P. Yurachkivsky, A generalization of a problem of stochastic geometry and related measure-valued processes. Ukr. Math. J. 52 (2000) 600–613. [CrossRef]
  22. A.P. Yurachkivsky, Two deterministic functional characteristics of a random measure. Th. Prob. Math. Stat. 65 (2002) 189–197.
  23. A.P. Yurachkivsky, Asymptotic study of measure-valued processes generated by randomly moving particles. Random Operators Stoch. Equations 10 (2002) 233–252. [CrossRef]
  24. A. Yurachkivsky, A criterion for relative compactness of a sequence of measure-valued random processes. Acta Appl. Math. 79 (2003) 157–164. [CrossRef]
  25. A.P. Yurachkivsky and G.G. Shapovalov, On the kinetics of amorphization under ion implantation, in: Frontiers in Nanoscale Science of Micron/Submicron Devices, NATO ASI, Series E: Applied Sciences, edited by A.-P. Jauho and E.V. Buzaneva. Kluwer, Dordrecht (1996) Vol. 328, 413–416.
  26. H. Zessin, The method of moments for random measures. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 62 (1983) 359–409. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.