Free Access
Volume 15, 2011
Page(s) 320 - 339
Published online 05 January 2012
  1. C. Abraham, P.A. Cornillon, E. Matzner-Løber and N. Molinari. Unsupervised curve clustering using B-splines. Scand. J. Stat. Th. Appl. 30 (2003) 581–595. [CrossRef]
  2. H. Akaike, Information theory and an extension of the maximum likelihood principle, in Second International Symposium on Information Theory (Tsahkadsor, 1971). Akadémiai Kiadó, Budapest (1973) 267–281.
  3. H. Akaike, A new look at the statistical model identification. IEEE Trans. Automatic Control AC-19 (1974) 716–723. System identification and time-series analysis
  4. S. Arlot, Réechantillonnage et sélection de modèles, Ph.D. thesis, Université Paris-Sud XI (2007).
  5. S. Arlot and P. Massart, Slope heuristics for heteroscedastic regression on a random design. Submitted to the Annals of Statistics (2008).
  6. D. Babusiaux, S. Barreau and P.-R. Bauquis, Oil and gas exploration and production, reserves, costs, contracts. Technip, Paris (2007).
  7. J.D. Banfield and A.E. Raftery, Model-based gaussian and non-gaussian clustering. Biometrics 49 (1993) 803–821. [CrossRef] [MathSciNet]
  8. A. Barron, L. Birgé and P. Massart, Risk bounds for model selection via penalization. Prob. Th. Rel. Fields 113 (1999) 301–413. [CrossRef] [MathSciNet]
  9. J.-P. Baudry, Clustering through model selection criteria. Poster session at One Day Statistical Workshop in Lisieux. baudry, June (2007).
  10. A. Berlinet, G. Biau and L. Rouvière, Functional classification with wavelets, Technical report To appear (2008), in Annales de l'ISUP.
  11. C. Biernacki, G. Celeux and G. Govaert, Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000) 719–725. [CrossRef]
  12. C. Biernacki, G. Celeux, G. Govaert and F. Langrognet, Model-based cluster and discriminant analysis with the MIXMOD software. Comp. Stat. Data Anal. 51 (2006) 587–600. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  13. L. Birgé and P. Massart, Gaussian model selection. J. Eur. Math. Soc. (JEMS) 3 (2001) 203–268. [CrossRef] [MathSciNet]
  14. L. Birgé and P. Massart, Minimal penalties for Gaussian model selection. Prob. Th. Rel. Fields 138 (2006) 33–73. [CrossRef] [MathSciNet]
  15. K.-E. Blake and C. Merz, Uci repository of machine learning databases (1999).
  16. L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and regression trees. Wadsworth Statistics/Probability Series. Wadsworth Advanced Books and Software, Belmont, CA (1984).
  17. G. Celeux and G. Govaert, Gaussian parsimonious clustering models. Patt. Recog. 28 (1995) 781–793. [CrossRef]
  18. A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B. Methodol. 39 (1977) 1–38, With discussion.
  19. S. Gagnot, J.-P. Tamby, M.-L. Martin-Magniette, F. Bitton, L. Taconnat, S. Balzergue, S. Aubourg, J.-P. Renou, A. Lecharny and V. Brunaud, CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform. Nucleic Acids Res. 36 (2008) 986–990. [CrossRef]
  20. L.A. García-Escudero and A. Gordaliza, A proposal for robust curve clustering. J. Class. 22 (2005) 185–201. [CrossRef]
  21. P.J. Huber, Robust Statistics. Wiley (1981).
  22. G.M. James and C.A. Sugar, Clustering for sparsely sampled functional data. J. Am. Stat. Assoc. 98 (2003) 397–408. [CrossRef]
  23. D. Jiang, C. Tang and A. Zhang, Cluster analysis for gene expression data: A survey. IEEE Trans. Knowl. Data Eng. 16 (2004) 1370–1386. [CrossRef]
  24. C. Keribin, Consistent estimation of the order of mixture models. Sankhyā Ser. A 62 (2000) 49–66. [MathSciNet]
  25. E. Lebarbier, Detecting multiple change-points in the mean of Gaussian process by model selection. Signal Proc. 85 (2005) 717–736. [CrossRef]
  26. V. Lepez, Potentiel de réserves d'un bassin pétrolier: modélisation et estimation, Ph.D. thesis, Université Paris Sud (2002).
  27. C. Lurin, C. Andréas, S. Aubourg, M. Bellaoui, F. Bitton, C. Bruyère, M. Caboche, J. Debast, C. Gualberto, B. Hoffmann, M. Lecharny, A. Le Ret, M.-L. Martin-Magniette, H. Mireau, N. Peeters, J.-P. Renou, B. Szurek, L. Taconnat and I. Small, Genome-wide analysis of arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16 (2004) 2089–103. [CrossRef] [PubMed]
  28. P. Ma, W. Castillo-Davis, C. Zhong and J.S. Liu, A data-driven clustering method for time course gene expression data. Nucleic Acids Res. 34 (2006) 1261–1269. [CrossRef] [PubMed]
  29. C.L. Mallows, Some comments on Cp. Technometrics 37 (1973) 362–372. [CrossRef]
  30. P. Massart, Concentration inequalities and model selection, Lecture Notes in Mathematics Vol. 1896. Springer, Berlin (2007). Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6–23 (2003).
  31. C. Maugis, G. Celeux and M.-L. Martin-Magniette, Variable selection for clustering with Gaussian mixture models. Biometrics 65 (2009) 701–709. [CrossRef] [MathSciNet] [PubMed]
  32. C. Maugis, G. Celeux and M.-L. Martin-Magniette, Variable selection in model-based clustering: A general variable role modeling. Comput. Stat. Data Anal. 53 (2009) 3872–3882.
  33. C. Maugis and B. Michel, A non asymptotic penalized criterion for Gaussian mixture model selection. ESAIM: P&S 15 (2011) 41–68. [CrossRef] [EDP Sciences]
  34. B. Michel, Modélisation de la production d'hydrocarbures dans un bassin pétrolier, Ph.D. thesis, Université Paris-Sud 11 (2008).
  35. B.P. Percival and A.T. Walden, Wavelet methods for time series analysis. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge university press, New York (2000).
  36. A.E. Raftery and N. Dean, Variable selection for model-based clustering. J. Am. Stat. Assoc. 101 (2006) 168–178. [CrossRef] [MathSciNet]
  37. G. Schwarz, Estimating the dimension of a model. Ann. Stat. 6 (1978) 461–464. [NASA ADS] [CrossRef] [MathSciNet]
  38. R. Sharan, R. Elkon and R. Shamir, Cluster analysis and its applications to gene expression data. In Ernst Schering Workshop on Bioinformatics and Genome Analysis. Springer Verlag (2002).
  39. T. Tarpey and K.K.J. Kinateder, Clustering functional data. J. Class. 20 (2003) 93–114. [CrossRef]
  40. F. Villers, Tests et sélection de modèles pour l'analyse de données protéomiques et transcriptomiques, Ph.D. thesis, Université Paris-Sud 11 (2007).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.