Free Access
Issue
ESAIM: PS
Volume 15, 2011
Page(s) 320 - 339
DOI https://doi.org/10.1051/ps/2010002
Published online 05 January 2012
  1. C. Abraham, P.A. Cornillon, E. Matzner-Løber and N. Molinari. Unsupervised curve clustering using B-splines. Scand. J. Stat. Th. Appl. 30 (2003) 581–595. [CrossRef] [Google Scholar]
  2. H. Akaike, Information theory and an extension of the maximum likelihood principle, in Second International Symposium on Information Theory (Tsahkadsor, 1971). Akadémiai Kiadó, Budapest (1973) 267–281. [Google Scholar]
  3. H. Akaike, A new look at the statistical model identification. IEEE Trans. Automatic Control AC-19 (1974) 716–723. System identification and time-series analysis [Google Scholar]
  4. S. Arlot, Réechantillonnage et sélection de modèles, Ph.D. thesis, Université Paris-Sud XI (2007). [Google Scholar]
  5. S. Arlot and P. Massart, Slope heuristics for heteroscedastic regression on a random design. Submitted to the Annals of Statistics (2008). [Google Scholar]
  6. D. Babusiaux, S. Barreau and P.-R. Bauquis, Oil and gas exploration and production, reserves, costs, contracts. Technip, Paris (2007). [Google Scholar]
  7. J.D. Banfield and A.E. Raftery, Model-based gaussian and non-gaussian clustering. Biometrics 49 (1993) 803–821. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Barron, L. Birgé and P. Massart, Risk bounds for model selection via penalization. Prob. Th. Rel. Fields 113 (1999) 301–413. [CrossRef] [MathSciNet] [Google Scholar]
  9. J.-P. Baudry, Clustering through model selection criteria. Poster session at One Day Statistical Workshop in Lisieux. http://www.math.u-psud.fr/ baudry, June (2007). [Google Scholar]
  10. A. Berlinet, G. Biau and L. Rouvière, Functional classification with wavelets, Technical report To appear (2008), in Annales de l'ISUP. [Google Scholar]
  11. C. Biernacki, G. Celeux and G. Govaert, Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000) 719–725. [CrossRef] [Google Scholar]
  12. C. Biernacki, G. Celeux, G. Govaert and F. Langrognet, Model-based cluster and discriminant analysis with the MIXMOD software. Comp. Stat. Data Anal. 51 (2006) 587–600. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  13. L. Birgé and P. Massart, Gaussian model selection. J. Eur. Math. Soc. (JEMS) 3 (2001) 203–268. [CrossRef] [MathSciNet] [Google Scholar]
  14. L. Birgé and P. Massart, Minimal penalties for Gaussian model selection. Prob. Th. Rel. Fields 138 (2006) 33–73. [CrossRef] [MathSciNet] [Google Scholar]
  15. K.-E. Blake and C. Merz, Uci repository of machine learning databases (1999). http://mlearn.ics.uci.edu/MLSummary.html. [Google Scholar]
  16. L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and regression trees. Wadsworth Statistics/Probability Series. Wadsworth Advanced Books and Software, Belmont, CA (1984). [Google Scholar]
  17. G. Celeux and G. Govaert, Gaussian parsimonious clustering models. Patt. Recog. 28 (1995) 781–793. [CrossRef] [Google Scholar]
  18. A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B. Methodol. 39 (1977) 1–38, With discussion. [Google Scholar]
  19. S. Gagnot, J.-P. Tamby, M.-L. Martin-Magniette, F. Bitton, L. Taconnat, S. Balzergue, S. Aubourg, J.-P. Renou, A. Lecharny and V. Brunaud, CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform. Nucleic Acids Res. 36 (2008) 986–990. [CrossRef] [Google Scholar]
  20. L.A. García-Escudero and A. Gordaliza, A proposal for robust curve clustering. J. Class. 22 (2005) 185–201. [CrossRef] [Google Scholar]
  21. P.J. Huber, Robust Statistics. Wiley (1981). [Google Scholar]
  22. G.M. James and C.A. Sugar, Clustering for sparsely sampled functional data. J. Am. Stat. Assoc. 98 (2003) 397–408. [CrossRef] [Google Scholar]
  23. D. Jiang, C. Tang and A. Zhang, Cluster analysis for gene expression data: A survey. IEEE Trans. Knowl. Data Eng. 16 (2004) 1370–1386. [CrossRef] [Google Scholar]
  24. C. Keribin, Consistent estimation of the order of mixture models. Sankhyā Ser. A 62 (2000) 49–66. [MathSciNet] [Google Scholar]
  25. E. Lebarbier, Detecting multiple change-points in the mean of Gaussian process by model selection. Signal Proc. 85 (2005) 717–736. [CrossRef] [Google Scholar]
  26. V. Lepez, Potentiel de réserves d'un bassin pétrolier: modélisation et estimation, Ph.D. thesis, Université Paris Sud (2002). [Google Scholar]
  27. C. Lurin, C. Andréas, S. Aubourg, M. Bellaoui, F. Bitton, C. Bruyère, M. Caboche, J. Debast, C. Gualberto, B. Hoffmann, M. Lecharny, A. Le Ret, M.-L. Martin-Magniette, H. Mireau, N. Peeters, J.-P. Renou, B. Szurek, L. Taconnat and I. Small, Genome-wide analysis of arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16 (2004) 2089–103. [CrossRef] [PubMed] [Google Scholar]
  28. P. Ma, W. Castillo-Davis, C. Zhong and J.S. Liu, A data-driven clustering method for time course gene expression data. Nucleic Acids Res. 34 (2006) 1261–1269. [CrossRef] [PubMed] [Google Scholar]
  29. C.L. Mallows, Some comments on Cp. Technometrics 37 (1973) 362–372. [CrossRef] [Google Scholar]
  30. P. Massart, Concentration inequalities and model selection, Lecture Notes in Mathematics Vol. 1896. Springer, Berlin (2007). Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6–23 (2003). [Google Scholar]
  31. C. Maugis, G. Celeux and M.-L. Martin-Magniette, Variable selection for clustering with Gaussian mixture models. Biometrics 65 (2009) 701–709. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  32. C. Maugis, G. Celeux and M.-L. Martin-Magniette, Variable selection in model-based clustering: A general variable role modeling. Comput. Stat. Data Anal. 53 (2009) 3872–3882. [Google Scholar]
  33. C. Maugis and B. Michel, A non asymptotic penalized criterion for Gaussian mixture model selection. ESAIM: P&S 15 (2011) 41–68. [CrossRef] [EDP Sciences] [Google Scholar]
  34. B. Michel, Modélisation de la production d'hydrocarbures dans un bassin pétrolier, Ph.D. thesis, Université Paris-Sud 11 (2008). [Google Scholar]
  35. B.P. Percival and A.T. Walden, Wavelet methods for time series analysis. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge university press, New York (2000). [Google Scholar]
  36. A.E. Raftery and N. Dean, Variable selection for model-based clustering. J. Am. Stat. Assoc. 101 (2006) 168–178. [CrossRef] [MathSciNet] [Google Scholar]
  37. G. Schwarz, Estimating the dimension of a model. Ann. Stat. 6 (1978) 461–464. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  38. R. Sharan, R. Elkon and R. Shamir, Cluster analysis and its applications to gene expression data. In Ernst Schering Workshop on Bioinformatics and Genome Analysis. Springer Verlag (2002). [Google Scholar]
  39. T. Tarpey and K.K.J. Kinateder, Clustering functional data. J. Class. 20 (2003) 93–114. [CrossRef] [Google Scholar]
  40. F. Villers, Tests et sélection de modèles pour l'analyse de données protéomiques et transcriptomiques, Ph.D. thesis, Université Paris-Sud 11 (2007). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.