Issue |
ESAIM: PS
Volume 13, January 2009
|
|
---|---|---|
Page(s) | 70 - 86 | |
DOI | https://doi.org/10.1051/ps:2008002 | |
Published online | 26 March 2009 |
Histogram selection in non Gaussian regression
Laboratoire de mathématiques – Bâtiment 425, Université Paris Sud, 91405 Orsay Cedex, France; marie.sauve@math.u-psud.f
Received:
26
November
2006
Revised:
13
November
2007
We deal with the problem of choosing a piecewise constant estimator of a regression function s mapping into
.
We consider a non Gaussian regression framework with deterministic design points, and we adopt the non asymptotic approach of model selection via penalization developed by Birgé and Massart.
Given a collection of partitions of
,
with possibly exponential complexity,
and the corresponding collection of piecewise constant estimators,
we propose a penalized least squares criterion which selects a partition whose associated estimator performs approximately as well as the best one,
in the sense that its quadratic risk is close to the infimum of the risks.
The risk bound we provide is non asymptotic.
Mathematics Subject Classification: 62G08 / 62G05
Key words: CART / change-points detection / deviation inequalities / model selection / oracle inequalities / regression
© EDP Sciences, SMAI, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.