Free Access
Volume 15, 2011
Page(s) 270 - 290
Published online 05 January 2012
  1. B.M. Bibby and M. Sørensen, Martingale estimating functions for discretely observed diffusion processes. Bernoulli 1 (1995) 17–39. [CrossRef] [MathSciNet] [Google Scholar]
  2. D. Florens-Zmirou, Approximate discrete time schemes for statistics of diffusion processes. Statistics 20 (1989) 547–557. [CrossRef] [MathSciNet] [Google Scholar]
  3. V. Genon-Catalot and J. Jacod, On the estimation of the diffusion coefficient for multidimensional diffusion processes. Ann. Inst. Henri Poincaré Probab. Statist. 29 (1993) 119–151. [Google Scholar]
  4. E. Gobet, LAN property for ergodic diffusions with discrete observations. Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) 711–737. [Google Scholar]
  5. P. Hall and C. Heyde, Martingale limit theory and its applications. Academic Press, New York (1980). [Google Scholar]
  6. I.A. Ibragimov and R.Z. Has'minskii, Statistical estimation. Springer Verlag, New York (1981). [Google Scholar]
  7. M. Kessler, Estimation of an ergodic diffusion from discrete observations. Scand. J. Statist. 24 (1997) 211–229. [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Kusuoka and N. Yoshida, Malliavin calculus, geometric mixing, and expansion of diffusion functionals, Probab. Theory Relat. Fields 116 (2000) 457–484. [Google Scholar]
  9. Yu.A. Kutoyants, Statistical inference for ergodic diffusion processes. Springer-Verlag, London (2004). [Google Scholar]
  10. H. Masuda, Ergodicity and exponential β-mixing bound for multidimensional diffusions with jumps. Stochastic Processes Appl. 117 (2007) 35–56. [Google Scholar]
  11. I.W. McKeague, Estimation for diffusion processes under misspecified models. J. Appl. Probab. 21 (1984) 511–520. [CrossRef] [Google Scholar]
  12. S.P. Meyn and P.L. Tweedie, Stability of Markovian processes. III. Foster-Lyapunov criteria for continuous-time processes. Adv. in Appl. Probab. 25 (1993) 518–548. [Google Scholar]
  13. E. Pardoux and A.Y. Veretennikov, On the Poisson equation and diffusion approximation 1. Ann. Prob. 29 (2001) 1061–1085. [Google Scholar]
  14. B.L.S. Prakasa Rao, Asymptotic theory for nonlinear least squares estimator for diffusion processes. Math. Operationsforsch. Statist. Ser. Statist. 14 (1983) 195–209. [MathSciNet] [Google Scholar]
  15. B.L.S. Prakasa Rao, Statistical inference from sampled data for stochastic processes. Contemp. Math. 80 (1988) 249–284. Amer. Math. Soc., Providence, RI. [CrossRef] [Google Scholar]
  16. M. Uchida and N. Yoshida, Information criteria in model selection for mixing processes. Statist. Infer. Stochast. Process. 4 (2001) 73–98. [CrossRef] [Google Scholar]
  17. N. Yoshida, Asymptotic behavior of M-estimator and related random field for diffusion process. Ann. Inst. Statist. Math. 42 (1990) 221–251. [CrossRef] [MathSciNet] [Google Scholar]
  18. N. Yoshida, Estimation for diffusion processes from discrete observation. J. Multivariate Anal. 41 (1992) 220–242. [CrossRef] [MathSciNet] [Google Scholar]
  19. N. Yoshida, Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations (to appear in Ann. Inst. Statist. Math.) (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.