Free Access
Issue
ESAIM: PS
Volume 15, 2011
Page(s) 249 - 269
DOI https://doi.org/10.1051/ps/2010003
Published online 05 January 2012
  1. M. Arcones, The large deviation principle of stochastic processes. II. Theory Probab. Appl. 48 (2003) 19–44. [CrossRef] [MathSciNet] [Google Scholar]
  2. H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Statistics 23 (1952) 493–507. [CrossRef] [MathSciNet] [Google Scholar]
  3. P. Deheuvels and M.A. Lifshits, On the Hausdorff dimension of the set generated by exceptional oscillations of a Wiener process. Studia. Sci. Math. Hungar. 33 (1997) 75–110. [MathSciNet] [Google Scholar]
  4. P. Deheuvels and D.M. Mason, Random fractals generated by oscillations of processes with stationary and independent increments. Probability in Banach Spaces. 9 (1994) 73–90. (J. Hoffman-Jørgensen, J. Kuelbs and M.B. Marcus, eds.) [Google Scholar]
  5. P. Deheuvels and D.M. Mason, On the fractal nature of empirical increments. Ann. Probab. 23 (1995) 355–387. [CrossRef] [MathSciNet] [Google Scholar]
  6. Z. Dindar, On the Hausdorff dimension of the set generated by exceptional oscillations of a two-parameter Wiener process. J. Multivariate Anal. 79 (2001) 52–70. [CrossRef] [MathSciNet] [Google Scholar]
  7. K.J. Falconer, The Geometry of Fractal Sets. Cambridge University Press, Cambridge (1985). [Google Scholar]
  8. P. Lévy, Théorie de l'addition des variables aléatoires, Gauthier-Villars et Cie (1937) [Google Scholar]
  9. D.M. Mason, A uniform functional law of the logarithm for a local Gaussian process. Progress in Probability 55 (2003) 135–151. [Google Scholar]
  10. D.M. Mason, A uniform functional law of the logarithm for the local empirical process. Ann. Probab. 32 (2004) 1391–1418. [CrossRef] [MathSciNet] [Google Scholar]
  11. S. Orey and S.J. Taylor, How often on a Brownian path does the law of the iterated logarithm fail? Proc. London Math. Soc. 28 (1974) 174–192. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Schilder, Some asymptotic formulas for Wiener integrals. Trans. Amer. Math. Soc. 125 (1966) 63–85. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Talagrand, Sharper bounds for gaussian and empirical processes. Ann. Probab. 22 (1994) 28–76. [CrossRef] [MathSciNet] [Google Scholar]
  14. A.W. van der Vaart and A.J. Wellner, Weak convergence and Empirical Processes. Springer, New-York (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.