Free Access
Issue
ESAIM: PS
Volume 15, 2011
Page(s) 1 - 29
DOI https://doi.org/10.1051/ps/2009007
Published online 22 February 2011
  1. M. Aerts and N. Veraverbeke, Bootstrapping a nonparametric polytomous regression model. Math. Meth. Statist. 4 (1995) 189–200.
  2. Y. Baraud and L. Birgé, Estimating the intensity of a random measure by histogram type estimators. Prob. Theory Relat. Fields 143 (2009) 239–284. [CrossRef]
  3. A. Barron, L. Birgé and P. Massart, Risk bounds for model selection via penalization. Prob. Theory Relat. Fields 113 (1999) 301–413. [CrossRef] [MathSciNet]
  4. C. Bennett and R. Sharpley, Interpolation of operators, volume 129 of Pure and Applied Mathematics. Academic Press Inc., Boston, M.A. (1988).
  5. L. Birgé, Model selection via testing: an alternative to (penalized) maximum likelihood estimators. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006) 273–325. [CrossRef] [MathSciNet]
  6. L. Birgé, Model selection for Poisson processes, in Asymptotics: Particles, Processes and Inverse Problems, Festschrift for Piet Groeneboom. IMS Lect. Notes Monograph Ser. 55. IMS, Beachwood, USA (2007) 32–64.
  7. L. Birgé and P. Massart, Minimal penalties for Gaussian model selection. Prob. Theory Relat. Fields 138 (2007) 33–73. [CrossRef] [MathSciNet]
  8. J.V. Braun and H.-G. Müller, Statistical methods for DNA sequence segmentation. Stat. Sci. 13 (1998) 142–162. [CrossRef]
  9. J.V. Braun, R.K. Braun and H.-G. Müller, Multiple changepoint fitting via quasilikelihood, with application to DNA sequence segmentation. Biometrika 87 (2000) 301–314. [CrossRef] [MathSciNet]
  10. T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to algorithms. Second edition. MIT Press, Cambridge, MA (2001).
  11. M. Csűrös, Algorithms for finding maximum-scoring segment sets, in Proc. of the 4th international workshop on algorithms in bioinformatics 2004. Lect. Notes Comput. Sci. 3240. Springer, Berlin, Heidelberg (2004) 62–73.
  12. R.A. DeVore and G.G. Lorentz, Constructive approximation. Springer-Verlag, Berlin, Heidelberg (1993).
  13. R.A. DeVore and R.C. Sharpley, Maximal functions measuring smoothness. Mem. Amer. Math. Soc. 47 (1984) 293.
  14. R.A. DeVore and X.M. Yu, Degree of adaptive approximation. Math. Comp. 55 (1990) 625–635. [CrossRef] [MathSciNet]
  15. C. Durot, E. Lebarbier and A.-S. Tocquet, Estimating the joint distribution of independent categorical variables via model selection. Bernoulli 15 (2009) 475–507. [CrossRef] [MathSciNet]
  16. Y.-X. Fu and R.N. Curnow, Maximum likelihood estimation of multiple change points. Biometrika 77 (1990) 562–565.
  17. S. Gey S. and E. Lebarbier, Using CART to detect multiple change-points in the mean for large samples. SSB preprint, Research report No. 12 (2008).
  18. M. Hoebeke, P. Nicolas and P. Bessières, MuGeN: simultaneous exploration of multiple genomes and computer analysis results. Bioinformatics 19 (2003) 859–864. [CrossRef] [PubMed]
  19. E. Lebarbier, Quelques approches pour la détection de ruptures à horizon fini. Ph.D. thesis, Université Paris Sud, Orsay, 2002.
  20. E. Lebarbier and E. Nédélec, Change-points detection for discrete sequences via model selection. SSB preprint, Research Report No. 9 (2007).
  21. P. Massart, Concentration inequalities and model selection. Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6–23, 2003. Lect. Notes Math. 1896. Springer, Berlin, Heidelberg (2007).
  22. P. Nicolas et al., Mining Bacillus subtilis chromosome heterogeneities using hidden Markov models. Nucleic Acids Res. 30 (2002) 1418–1426. [CrossRef] [PubMed]
  23. W. Szpankowski, L. Szpankowski and W. Ren, An optimal DNA segmentation based on the MDL principle. Int. J. Bioinformatics Res. Appl. 1 (2005) 3–17. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.