Free Access
Issue
ESAIM: PS
Volume 15, 2011
Page(s) 1 - 29
DOI https://doi.org/10.1051/ps/2009007
Published online 22 February 2011
  1. M. Aerts and N. Veraverbeke, Bootstrapping a nonparametric polytomous regression model. Math. Meth. Statist. 4 (1995) 189–200. [Google Scholar]
  2. Y. Baraud and L. Birgé, Estimating the intensity of a random measure by histogram type estimators. Prob. Theory Relat. Fields 143 (2009) 239–284. [CrossRef] [Google Scholar]
  3. A. Barron, L. Birgé and P. Massart, Risk bounds for model selection via penalization. Prob. Theory Relat. Fields 113 (1999) 301–413. [CrossRef] [MathSciNet] [Google Scholar]
  4. C. Bennett and R. Sharpley, Interpolation of operators, volume 129 of Pure and Applied Mathematics. Academic Press Inc., Boston, M.A. (1988). [Google Scholar]
  5. L. Birgé, Model selection via testing: an alternative to (penalized) maximum likelihood estimators. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006) 273–325. [CrossRef] [MathSciNet] [Google Scholar]
  6. L. Birgé, Model selection for Poisson processes, in Asymptotics: Particles, Processes and Inverse Problems, Festschrift for Piet Groeneboom. IMS Lect. Notes Monograph Ser. 55. IMS, Beachwood, USA (2007) 32–64. [Google Scholar]
  7. L. Birgé and P. Massart, Minimal penalties for Gaussian model selection. Prob. Theory Relat. Fields 138 (2007) 33–73. [CrossRef] [MathSciNet] [Google Scholar]
  8. J.V. Braun and H.-G. Müller, Statistical methods for DNA sequence segmentation. Stat. Sci. 13 (1998) 142–162. [CrossRef] [Google Scholar]
  9. J.V. Braun, R.K. Braun and H.-G. Müller, Multiple changepoint fitting via quasilikelihood, with application to DNA sequence segmentation. Biometrika 87 (2000) 301–314. [CrossRef] [MathSciNet] [Google Scholar]
  10. T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to algorithms. Second edition. MIT Press, Cambridge, MA (2001). [Google Scholar]
  11. M. Csűrös, Algorithms for finding maximum-scoring segment sets, in Proc. of the 4th international workshop on algorithms in bioinformatics 2004. Lect. Notes Comput. Sci. 3240. Springer, Berlin, Heidelberg (2004) 62–73. [Google Scholar]
  12. R.A. DeVore and G.G. Lorentz, Constructive approximation. Springer-Verlag, Berlin, Heidelberg (1993). [Google Scholar]
  13. R.A. DeVore and R.C. Sharpley, Maximal functions measuring smoothness. Mem. Amer. Math. Soc. 47 (1984) 293. [Google Scholar]
  14. R.A. DeVore and X.M. Yu, Degree of adaptive approximation. Math. Comp. 55 (1990) 625–635. [CrossRef] [MathSciNet] [Google Scholar]
  15. C. Durot, E. Lebarbier and A.-S. Tocquet, Estimating the joint distribution of independent categorical variables via model selection. Bernoulli 15 (2009) 475–507. [CrossRef] [MathSciNet] [Google Scholar]
  16. Y.-X. Fu and R.N. Curnow, Maximum likelihood estimation of multiple change points. Biometrika 77 (1990) 562–565. [Google Scholar]
  17. S. Gey S. and E. Lebarbier, Using CART to detect multiple change-points in the mean for large samples. SSB preprint, Research report No. 12 (2008). [Google Scholar]
  18. M. Hoebeke, P. Nicolas and P. Bessières, MuGeN: simultaneous exploration of multiple genomes and computer analysis results. Bioinformatics 19 (2003) 859–864. [CrossRef] [PubMed] [Google Scholar]
  19. E. Lebarbier, Quelques approches pour la détection de ruptures à horizon fini. Ph.D. thesis, Université Paris Sud, Orsay, 2002. [Google Scholar]
  20. E. Lebarbier and E. Nédélec, Change-points detection for discrete sequences via model selection. SSB preprint, Research Report No. 9 (2007). [Google Scholar]
  21. P. Massart, Concentration inequalities and model selection. Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6–23, 2003. Lect. Notes Math. 1896. Springer, Berlin, Heidelberg (2007). [Google Scholar]
  22. P. Nicolas et al., Mining Bacillus subtilis chromosome heterogeneities using hidden Markov models. Nucleic Acids Res. 30 (2002) 1418–1426. [CrossRef] [PubMed] [Google Scholar]
  23. W. Szpankowski, L. Szpankowski and W. Ren, An optimal DNA segmentation based on the MDL principle. Int. J. Bioinformatics Res. Appl. 1 (2005) 3–17. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.