Free Access
Issue |
ESAIM: PS
Volume 13, January 2009
|
|
---|---|---|
Page(s) | 135 - 151 | |
DOI | https://doi.org/10.1051/ps:2008001 | |
Published online | 26 March 2009 |
- K.B. Athreya and G.S. Atuncar, Kernel estimation for real-valued Markov chains. Sankhyā Ser. A 60 (1998) 1–17. [MathSciNet] [Google Scholar]
- P.J. Bickel, C.A.J. Klaassen, Y. Ritov and J.A. Wellner, Efficient and Adaptive Estimation for Semiparametric Models. Springer, New York (1998). [Google Scholar]
- F.C. Drost, C.A.J. Klaassen and B.J.M. Werker, Adaptive estimation in time-series models. Ann. Statist. 25 (1997) 786–817. [CrossRef] [MathSciNet] [Google Scholar]
- E.W. Frees, Estimating densities of functions of observations. J. Amer. Statist. Assoc. 89 (1994) 517–525. [CrossRef] [MathSciNet] [Google Scholar]
- E. Giné and D. Mason, On local U-statistic processes and the estimation of densities of functions of several variables. Ann. Statist. 35 (2007a) 1105–1145. [CrossRef] [MathSciNet] [Google Scholar]
- E. Giné and D. Mason, Laws of the iterated logarithm for the local U-statistic process. J. Theoret. Probab. 20 (2007b) 457–485. [CrossRef] [MathSciNet] [Google Scholar]
- P. Jeganathan, Some aspects of asymptotic theory with applications to time series models. Econometric Theory 11 (1995) 818–887. [CrossRef] [MathSciNet] [Google Scholar]
- H.L. Koul and A. Schick, Efficient estimation in nonlinear autoregressive time series models. Bernoulli 3 (1997) 247–277. [CrossRef] [MathSciNet] [Google Scholar]
- J.-P. Kreiss, On adaptive estimation in stationary ARMA processes. Ann. Statist. 1 (1987a) 112–133. [CrossRef] [Google Scholar]
- J.-P. Kreiss, On adaptive estimation in autoregressive models when there are nuisance functions. Statist. Decisions 5 (1987b) 59–76. [MathSciNet] [Google Scholar]
- M. Ledoux and M. Talagrand, Probability in Banach Spaces. Isoperimetry and Processes. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 23, Springer, Berlin (1991). [Google Scholar]
- U.U. Müller, A. Schick and W. Wefelmeyer, Weighted residual-based density estimators for nonlinear autoregressive models. Statist. Sinica 15 (2005) 177–195. [MathSciNet] [Google Scholar]
- H.T. Nguyen, Recursive nonparametric estimation in stationary Markov processes. Publ. Inst. Statist. Univ. Paris 29 (1984) 65–84. [MathSciNet] [Google Scholar]
- A.B. Owen, Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75 (1988) 237–249. [CrossRef] [MathSciNet] [Google Scholar]
- A.B. Owen, Empirical Likelihood. Monographs on Statistics and Applied Probability 92, Chapman & Hall / CRC, London (2001). [Google Scholar]
- G.G. Roussas, Nonparametric estimation in Markov processes. Ann. Inst. Statist. Math. 21 (1969) 73–87. [CrossRef] [MathSciNet] [Google Scholar]
- G.G. Roussas, Nonparametric estimation in mixing sequences of random variables. J. Statist. Plann. Inference 18 (1988). 135–149. [Google Scholar]
- A. Saavedra and R. Cao, Rate of convergence of a convolution-type estimator of the marginal density of an MA(1) process. Stoch. Proc. Appl. 80 (1999) 129–155. [CrossRef] [Google Scholar]
- A. Saavedra and R. Cao, On the estimation of the marginal density of a moving average process. Canad. J. Statist. 28 (2000) 799–815. [CrossRef] [MathSciNet] [Google Scholar]
- A. Schick and W. Wefelmeyer, Root-n consistent and optimal density estimators for moving average processes. Scand. J. Statist. 31 (2004a) 63–78. [CrossRef] [MathSciNet] [Google Scholar]
- A. Schick and W. Wefelmeyer, Root-n consistent density estimators for sums of independent random variables. J. Nonparametr. Statist. 16 (2004b) 925–935. [CrossRef] [Google Scholar]
- A. Schick and W. Wefelmeyer, Functional convergence and optimality of plug-in estimators for stationary densities of moving average processes. Bernoulli 10 (2004c) 889–917. [CrossRef] [MathSciNet] [Google Scholar]
- A. Schick and W. Wefelmeyer, Convergence rates in weighted L1-spaces of kernel density estimators for linear processes. Technical Report, Department of Mathematical Sciences, Binghamton University (2006). [Google Scholar]
- A. Schick and W. Wefelmeyer, Uniformly root-n consistent density estimators for weakly dependent invertible linear processes. Ann. Statist. 35 (2007a) 815–843. [CrossRef] [MathSciNet] [Google Scholar]
- A. Schick and W. Wefelmeyer, Root-n consistent density estimators of convolutions in weighted L1-norms. J. Statist. Plann. Inference 137 (2007b) 1765–1774. [CrossRef] [MathSciNet] [Google Scholar]
- A. Schick and W. Wefelmeyer, Root-n consistency in weighted L1-spaces for density estimators of invertible linear processes. in: Stat. Inference Stoch. Process. 11 (2008) 281–310. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.