Free Access
Volume 13, January 2009
Page(s) 115 - 134
Published online 26 March 2009
  1. J. Barkoulas and C.F. Baum, Long-memory forecasting of US monetary indices. J. Forecast. 25 (2006) 291–302. [CrossRef] [MathSciNet]
  2. R.J. Bhansali, Linear prediction by autoregressive model fitting in the time domain. Ann. Stat. 6 (1978) 224–231. [CrossRef]
  3. R.J. Bhansali and P.S. Kokoszka, Prediction of long-memory time series: An overview. Estadística 53 No. 160–161 (2001) 41–96.
  4. N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular variation (1987).
  5. P.J. Brockwell and R.A. Davis, Simple consistent estimation of the coefficients of a linear filter. Stochastic Process. Appl. (1988) 47–59.
  6. P.J. Brockwell and R.A. Davis, Time Series: Theory and Methods. Springer Series in Statistics (1991).
  7. N. Crato and B.K. Ray, Model selection and forecasting for long-range dependent processes. J. Forecast. 15 (1996) 107–125. [CrossRef]
  8. C.W.J. Granger and R. Joyeux, An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 1 (1980) 15–29. [CrossRef] [MathSciNet]
  9. H.L. Gray, N.-F. Zhang and W.A. Woodward, On generalized fractional processes. J. Time Ser. Anal. 10 (1989) 233–257. [CrossRef] [MathSciNet]
  10. J.R.M. Hosking, Fractional differencing. Biometrika 68 (1981) 165–176. [CrossRef] [MathSciNet]
  11. A. Inoue, Regularly varying correlation functions and KMO-Langevin equations. Hokkaido Math. J. 26 (1997) 457–482. [MathSciNet]
  12. A. Inoue, Asymptotics for the partial autocorrelation function of a stationary process. J. Anal. Math. 81 (2000) 65–109. [CrossRef] [MathSciNet]
  13. R. Lewis and G.C. Reinsel, Prediction of multivariate time series by autoregressive model fitting. J. Multivariate Anal. 16 (1985) 393–411. [CrossRef] [MathSciNet]
  14. B. Mandelbrot and J.R. Wallis, Some long-run properties of geophysical records. Water Resour. Res. 5 (1969) 321–340. [NASA ADS] [CrossRef]
  15. M. Pourahmadi, On the convergence of finite linear predictors of stationary processes. J. Multivariate Anal. 30 (1989) 167–180. [CrossRef] [MathSciNet]
  16. B.K. Ray, Modeling long-memory processes for optimal long-range prediction. J. Time Ser. Anal. 14 (1993) 511–525. [CrossRef] [MathSciNet]
  17. L.J. Soares and L.R. Souza, Forecasting electricity demand using generalized long memory. Int. J. Forecast. 22 (2006) 17–28. [CrossRef]
  18. M.-C. Viano, Cl. Deniau and G. Oppenheim, Long-range dependence and mixing for discrete time fractional processes. J. Time Ser. Anal. 16 (1995) 323–338. [CrossRef] [MathSciNet]
  19. P. Whittle, Prediction and regulation by linear least-square methods. 2nd edn. (1963).
  20. A. Zygmund, Trigonometric series. Cambridge University Press (1968).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.