Free Access
Issue
ESAIM: PS
Volume 12, April 2008
Page(s) 230 - 257
DOI https://doi.org/10.1051/ps:2007037
Published online 23 January 2008
  1. P. Abry and V. Pipiras, Wavelet-based synthesis of the Rosenblatt process. Signal Process. 86 (2006) 2326–2339. [Google Scholar]
  2. J.M.P. Albin, A note on the Rosenblatt distributions. Statist. Probab. Lett. 40 (1998) 83–91. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.M.P. Albin, On extremal theory for self similar processes. Ann. Probab. 26 (1998) 743–793. [CrossRef] [MathSciNet] [Google Scholar]
  4. E. Alòs, O. Mazet and D. Nualart, Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29 (2001) 766–801. [CrossRef] [MathSciNet] [Google Scholar]
  5. E. Alòs and D. Nualart, Stochastic integration with respect to the fractional Brownian motion. Stoch. Stoch. Rep. 75 (2003) 129–152. [CrossRef] [MathSciNet] [Google Scholar]
  6. T. Androshuk and Y. Mishura, Mixed Brownian-fractional Brownian model: absence of arbitrage and related topics. Stochastics An Int. J. Probability Stochastic Processes 78 (2006) 281–300. [CrossRef] [Google Scholar]
  7. F. Biagini, M. Campanino and S. Fuschini, Discrete approximation of stochastic integrals with respect of fractional Brownian motion of Hurst index H > 1/2 Preprint University of Bologna (2005). [Google Scholar]
  8. P. Cheridito, H. Kawaguchi and M. Maejima, Fractional Ornstein-Uhlenbeck processes. Electron. J. Probab. 8 (2003) 1–14. [MathSciNet] [Google Scholar]
  9. L. Decreusefond and A.S. Ustunel, Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 (1998) 177–214. [Google Scholar]
  10. G. da Prato and J. Zabczyk, Stochastic equations in infinite dimensions. Cambridge University Press (1992). [Google Scholar]
  11. R.L. Dobrushin and P. Major, Non-central limit theorems for non-linear functionals of Gaussian fields. Z. Wahrscheinlichkeitstheorie verw. Gebiete 50 (1979) 27–52. [Google Scholar]
  12. A. Drewitz, Mild solutions to stochastic evolution equations with fractional Brownian motion. Diploma thesis at TU Darmstadt (2005). [Google Scholar]
  13. P. Embrechts and M. Maejima, Selfsimilar processes. Princeton University Press, Princeton, New York (2002). [Google Scholar]
  14. R. Fox and M.S. Taqqu, Multiple stochastic integrals with dependent integrators. J. Mult. Anal. 21 (1987) 105–127. [CrossRef] [Google Scholar]
  15. V. Goodman and J. Kuelbs, Gaussian chaos and functional law of the ierated logarithm for Itô-Wiener integrals. Ann. I.H.P., Section B 29 (1993) 485–512. [Google Scholar]
  16. M. Gradinaru, I. Nourdin, F. Russo and P. Vallois, m-order integrals and generalized Itôs formula; the case of a fractional Brownian motion with any Hurst parameter. Preprint, to appear in Annales de l'Institut Henri Poincaré (2003). [Google Scholar]
  17. M. Gradinaru, I. Nourdin and S. Tindel, Ito's and Tanaka's type formulae for the stochastic heat equation. J. Funct. Anal. 228 (2005) 114–143. [CrossRef] [MathSciNet] [Google Scholar]
  18. P. Hall, W. Hardle, T. Kleinow and P. Schmidt, Semiparametric Bootstrap Approach to Hypothesis tests and Confidence intervals for the Hurst coefficient. Stat. Infer. Stoch. Process. 3 (2000) 263–276. [CrossRef] [Google Scholar]
  19. M. Jolis and M. Sanz, Integrator properties of the Skorohod integral. Stochastics and Stochastics Reports 41 (1992) 163–176. [Google Scholar]
  20. O. Kallenberg, On an independence criterion for multiple Wiener integrals. Ann. Probab. 19 (1991) 483–485. [CrossRef] [MathSciNet] [Google Scholar]
  21. H. Kettani and J. Gubner, Estimation of the long-range dependence parameter of fractional Brownian motionin, in Proc. 28th IEEE LCN03 (2003). [Google Scholar]
  22. I. Kruk, F. Russo and C.A. Tudor, Wiener integrals, Malliavin calculus and covariance measure structure. J. Funct. Anal. 249 (2007) 92–142. [CrossRef] [MathSciNet] [Google Scholar]
  23. N.N. Leonenko and V.V. Ahn, Rate of convergence to the Rosenblatt distribution for additive functionals of stochastic processes with long-range dependence. J. Appl. Math. Stoch. Anal. 14 (2001) 27–46. [CrossRef] [Google Scholar]
  24. N.N. Leonenko and W. Woyczynski, Scaling limits of solutions of the heat equation for singular Non-Gaussian data. J. Stat. Phys. 91 423–438. [Google Scholar]
  25. M. Maejima and C.A. Tudor, Wiener integrals with respect to the Hermite process and a non central limit theorem. Stoch. Anal. Appl. 25 (2007) 1043–1056. [CrossRef] [MathSciNet] [Google Scholar]
  26. O. Mocioalca and F. Viens, Skorohod integration and stochastic calculus beyond the fractional Brownian scale. J. Funct. Anal. 222 (2004) 385–434. [CrossRef] [Google Scholar]
  27. I. Norros, E. Valkeila and J. Virtamo, An elementary approach to a Girsanov formula and other analytical results for fractional Brownian motion. Bernoulli 5 (1999) 571–587. [CrossRef] [MathSciNet] [Google Scholar]
  28. I. Nourdin, A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one. Séminaire de Probabilités XLI (2006). To appear. [Google Scholar]
  29. D. Nualart, Malliavin Calculus and Related Topics. Springer (1995). [Google Scholar]
  30. D. Nualart and M. Zakai, Generalized mulptiple stochastic integrals and the representation of Wiener functionals. Stochastics 23 (1987) 311–330. [Google Scholar]
  31. V. Pipiras, Wavelet type expansion of the Rosenblatt process. J. Fourier Anal. Appl. 10 (2004) 599–634. [CrossRef] [MathSciNet] [Google Scholar]
  32. V. Pipiras and M. Taqqu, Convergence of weighted sums of random variables with long range dependence. Stoch. Process. Appl. 90 (2000) 157–174. [CrossRef] [Google Scholar]
  33. V. Pipiras and Murad Taqqu, Integration questions related to the fractional Brownian motion. Probab. Theor. Relat. Fields 118 (2001) 251–281. [CrossRef] [Google Scholar]
  34. N. Privault and C.A. Tudor, Skorohod and pathwise stochastic calculus with respect to an L2-process. Rand. Oper. Stoch. Equ. 8 (2000) 201–204. [CrossRef] [Google Scholar]
  35. Z. Qian and T. Lyons, System control and rough paths. Clarendon Press, Oxford (2002). [Google Scholar]
  36. M. Rosenblatt, Independence and dependence. Proc. 4th Berkeley Symposium on Math, Stat. II (1961) 431–443. [Google Scholar]
  37. F. Russo and P. Vallois, Forward backward and symmetric stochastic integration. Probab. Theor. Relat. Fields 97 (1993) 403–421. [CrossRef] [Google Scholar]
  38. F. Russo and P. Vallois, Stochastic calculus with respect to a finite quadratic variation process. Stoch. Stoch. Rep. 70 (2000) 1–40. [Google Scholar]
  39. F. Russo and P. Vallois, Elements of stochastic calculus via regularization. Preprint, to appear in Séminaire de Probabilités (2006). [Google Scholar]
  40. G. Samorodnitsky and M. Taqqu, Stable Non-Gaussian random variables. Chapman and Hall, London (1994). [Google Scholar]
  41. A.S. Üstunel and M. Zakai, On independence and conditioning on Wiener space. Ann. Probab. 17 (1989) 1441–1453. [CrossRef] [MathSciNet] [Google Scholar]
  42. M. Taqqu, Weak convergence to the fractional Brownian motion and to the Rosenblatt process. Z. Wahrscheinlichkeitstheorie verw. Gebiete 31 (1975) 287–302. [Google Scholar]
  43. M. Taqqu, Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheorie verw. Gebiete 50 (1979) 53–83. [Google Scholar]
  44. M. Taqqu, A bibliographical guide to selfsimilar processes and long-range dependence. Dependence in Probability and Statistics, Birkhauser, Boston (1986) 137–162. [Google Scholar]
  45. S. Tindel, C.A. Tudor and F. Viens, Stochastic evolution equations with fractional Brownian motion. Probab. Theor. Relat. Fields. 127 (2003) 186–204. [Google Scholar]
  46. C.A. Tudor, Itô's formula for the infinite-dimensional fractional Brownian motion. J. Math. Kyoto University 45 (2005) 531–546. [Google Scholar]
  47. W.B. Wu, Unit root testing for functionals of linear processes. Econ. Theory 22 (2005) 1–14. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.