Free Access
Issue
ESAIM: PS
Volume 12, April 2008
Page(s) 219 - 229
DOI https://doi.org/10.1051/ps:2007035
Published online 23 January 2008
  1. G. Bejerano and G. Yona, Variations on probabilistic suffix trees: statistical modeling and prediction of protein families. Bioinformatics 17 (2001) 23–43. [CrossRef] [PubMed] [Google Scholar]
  2. P. Bühlmann and A. Wyner, Variable length Markov chains. Ann. Statist. 27 (1999) 480–513. [CrossRef] [MathSciNet] [Google Scholar]
  3. I. Csiszár, Large-scale typicality of Markov sample paths and consistency of MDL order estimators. Special issue on Shannon theory: perspective, trends, and applications. IEEE Trans. Inform. Theory 48 (2002) 1616–1628. [CrossRef] [MathSciNet] [Google Scholar]
  4. I. Csiszár and Z. Talata, Context tree estimation for not necessarily finite memory processes via BIC and MDL, manuscript (2005). [Google Scholar]
  5. J. Dedecker and P. Doukhan, A new covariance inequality and applications. Stochastic Process. Appl. 106 (2003) 63–80. [CrossRef] [MathSciNet] [Google Scholar]
  6. J. Dedecker and C. Prieur, New dependence coefficients. Examples and applications to statistics. Prob. Theory Relat. Fields 132 (2005) 203–236. [Google Scholar]
  7. P. Ferrari and A. Galves, Coupling and regeneration for stochastic processes. Notes for a minicourse presented in XIII Escuela Venezolana de Matematicas. Can be downloaded from www.ime.usp.br/~pablo/book/abstract.html (2000). [Google Scholar]
  8. F. Ferrari and A. Wyner, Estimation of general stationary processes by variable length Markov chains. Scand. J. Statist. 30 (2003) 459–480. [CrossRef] [MathSciNet] [Google Scholar]
  9. F. Leonardi and A. Galves, Sequence Motif identification and protein classification using probabilistic trees. Lect. Notes Comput. Sci. 3594 (2005) 190–193. [CrossRef] [Google Scholar]
  10. V. Maume-Deschamps, Exponential inequalities and estimation of conditional probabilities in Dependence in probability and statistics, Lect. Notes in Stat., Vol. 187, P. Bertail, P. Doukhan and P. Soulier Eds. Springer (2006). [Google Scholar]
  11. J. Rissanen, A universal data compression system. IEEE Trans. Inform. Theory 29 (1983) 656–664. [CrossRef] [MathSciNet] [Google Scholar]
  12. T.J. Tjalkens and F.M.J.F. Willems, Implementing the context-tree weighting method: arithmetic coding. Recent advances in interdisciplinary mathematics (Portland, ME, 1997). J. Combin. Inform. System Sci. 25 (2000) 49-58. [MathSciNet] [Google Scholar]
  13. F.M. Willems, Y.M. Shtarkov and T.J Tjalkens, The context-tree weighting method: basic properties. IEEE Trans. Inform. Theory 41 (1995) 653–664. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.