Free Access
Volume 12, April 2008
Page(s) 258 - 272
Published online 23 January 2008
  1. F. Barthe, P. Cattiaux and C. Roberto, Interpolated inequalities between exponential and gaussian, Orlicz hypercontractivity and application to isoperimetry. Revistra Mat. Iberoamericana 22 (2006) 993–1067. [Google Scholar]
  2. F. Barthe and C. Roberto, Sobolev inequalities for probability measures on the real line. Studia Math. 159 (2003) 481–497. Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday (Polish). [Google Scholar]
  3. T. Bodineau and B. Helffer, Correlations, spectral gaps and log-Sobolev inequalities for unbounded spins systems, in Differential equations and mathematical physics, Birmingham, International Press (1999) 27–42. [Google Scholar]
  4. T. Bodineau and F. Martinelli, Some new results on the kinetic ising model in a pure phase. J. Statist. Phys. 109 (2002) 207–235. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. Cattiaux, I. Gentil and A. Guillin, Weak logarithmic Sobolev inequalities and entropic convergence. Prob. Theory Rel. Fields 139 (2007) 563–603. [Google Scholar]
  6. P. Cattiaux and A. Guillin, On quadratic transportation cost inequalities. J. Math. Pures Appl. 86 (2006) 342–361. [CrossRef] [Google Scholar]
  7. R. Latała and K. Oleszkiewicz, Between Sobolev and Poincaré, in Geometric aspects of functional analysis, Lect. Notes Math. Springer, Berlin 1745 (2000) 147–168. [Google Scholar]
  8. M. Ledoux, Logarithmic Sobolev inequalities for unbounded spin systems revisited, in Séminaire de Probabilités, XXXV, Lect. Notes Math. Springer, Berlin 1755 (2001) 167–194. [Google Scholar]
  9. S.L. Lu and H.-T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics. Comm. Math. Phys. 156 (1993) 399–433. [CrossRef] [MathSciNet] [Google Scholar]
  10. L. Miclo, An example of application of discrete Hardy's inequalities. Markov Process. Related Fields 5 (1999) 319–330. [MathSciNet] [Google Scholar]
  11. G. Royer, Une initiation aux inégalités de Sobolev logarithmiques. Number 5 in Cours spécialisés. SMF (1999). [Google Scholar]
  12. D.W. Stroock and B. Zegarliński, The logarithmic Sobolev inequality for discrete spin systems on a lattice. Comm. Math. Phys. 149 (1992) 175–193. [CrossRef] [MathSciNet] [Google Scholar]
  13. D.W. Stroock and B. Zegarliński, On the ergodic properties of Glauber dynamics. J. Stat. Phys. 81(5/6) (1995). [Google Scholar]
  14. N. Yoshida, The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice. Annales de l'Institut H. Poincaré 37 (2001) 223–243. [Google Scholar]
  15. B. Zegarliński. The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice. Comm. Math. Phys. 175 (1996) 401–432. [Google Scholar]
  16. P.-A. Zitt, Applications d'inégalités fonctionnelles à la mécanique statistique et au recuit simulé. PhD thesis, University of Paris X, Nanterre (2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.