Free Access
Volume 12, April 2008
Page(s) 258 - 272
Published online 23 January 2008
  1. F. Barthe, P. Cattiaux and C. Roberto, Interpolated inequalities between exponential and gaussian, Orlicz hypercontractivity and application to isoperimetry. Revistra Mat. Iberoamericana 22 (2006) 993–1067.
  2. F. Barthe and C. Roberto, Sobolev inequalities for probability measures on the real line. Studia Math. 159 (2003) 481–497. Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday (Polish). [CrossRef] [MathSciNet]
  3. T. Bodineau and B. Helffer, Correlations, spectral gaps and log-Sobolev inequalities for unbounded spins systems, in Differential equations and mathematical physics, Birmingham, International Press (1999) 27–42.
  4. T. Bodineau and F. Martinelli, Some new results on the kinetic ising model in a pure phase. J. Statist. Phys. 109 (2002) 207–235. [CrossRef] [MathSciNet]
  5. P. Cattiaux, I. Gentil and A. Guillin, Weak logarithmic Sobolev inequalities and entropic convergence. Prob. Theory Rel. Fields 139 (2007) 563–603. [CrossRef]
  6. P. Cattiaux and A. Guillin, On quadratic transportation cost inequalities. J. Math. Pures Appl. 86 (2006) 342–361. [CrossRef]
  7. R. Latała and K. Oleszkiewicz, Between Sobolev and Poincaré, in Geometric aspects of functional analysis, Lect. Notes Math. Springer, Berlin 1745 (2000) 147–168.
  8. M. Ledoux, Logarithmic Sobolev inequalities for unbounded spin systems revisited, in Séminaire de Probabilités, XXXV, Lect. Notes Math. Springer, Berlin 1755 (2001) 167–194.
  9. S.L. Lu and H.-T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics. Comm. Math. Phys. 156 (1993) 399–433. [CrossRef] [MathSciNet]
  10. L. Miclo, An example of application of discrete Hardy's inequalities. Markov Process. Related Fields 5 (1999) 319–330. [MathSciNet]
  11. G. Royer, Une initiation aux inégalités de Sobolev logarithmiques. Number 5 in Cours spécialisés. SMF (1999).
  12. D.W. Stroock and B. Zegarliński, The logarithmic Sobolev inequality for discrete spin systems on a lattice. Comm. Math. Phys. 149 (1992) 175–193. [CrossRef] [MathSciNet]
  13. D.W. Stroock and B. Zegarliński, On the ergodic properties of Glauber dynamics. J. Stat. Phys. 81(5/6) (1995).
  14. N. Yoshida, The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice. Annales de l'Institut H. Poincaré 37 (2001) 223–243. [CrossRef]
  15. B. Zegarliński. The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice. Comm. Math. Phys. 175 (1996) 401–432.
  16. P.-A. Zitt, Applications d'inégalités fonctionnelles à la mécanique statistique et au recuit simulé. PhD thesis, University of Paris X, Nanterre (2006).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.