Free Access
Volume 12, April 2008
Page(s) 273 - 307
Published online 08 May 2008
  1. J.A. Adell and P. Jodrá, The median of the Poisson distribution. Metrika 61 3 (2005) 337–346. [CrossRef]
  2. P. Baufays and J.-P. Rasson, A new geometric discriminant rule. Comput. Stat. Q. 2 (1985) 15–30.
  3. P. Billingsley, Convergence of Probability measures. Wiley (1968).
  4. D. Deprins, L. Simar and H. Tulkens, Measuring Labor Efficiency in Post Offices, in The Performance of Public Enterprises: Concepts and Measurements, M. Marchand, P. Pestieau and H. Tulkens Eds., North Holland, Amsterdam (1984).
  5. J.D. Deuschel and D.W. Stroock, Large Deviations. Pure and Applied Mathematics, 137. Boston, MA Academic Press (1989).
  6. L.P. Devroye and G.L. Wise, Detection of abnormal behavior via non parametric estimation of the support. SIAM J. Appl. Math. 38 (1980) 448–480.
  7. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications. Jones and Bartlett, Boston and London (1993).
  8. L. Gardes, Estimating the support of a Poisson process via the Faber-Schauder basis and extrems values. Publications de l'Institut de Statistique de l'Université de Paris XLVI 43–72 (2002).
  9. J. Geffroy, Sur un problème d'estimation géométrique. Publications de l'Institut de Statistique de l'Université de Paris XIII (1964) 191–200.
  10. I. Gijbels, E. Mammen, B.U. Park and L. Simar, On estimation of monotone and concave frontier functions. J. Amer. Statist. Assoc. 94 (1999) 220–228. [CrossRef] [MathSciNet]
  11. S. Girard and P. Jacob, Projection estimates of point processes boundaries. J. Statist. Planning Inference 116 (2003), 1–15.
  12. S. Girard and P. Jacob, Extreme values and kernel estimates of point processes boundaries. ESAIM: PS 8 (2005) 150–168 . [CrossRef] [EDP Sciences]
  13. S. Girard and L. Menneteau, Central limit theorems for smoothed extreme value estimates of Poisson point processes boundaries. J. Statist. Planning Inference 135 (2005) 433–460. [CrossRef]
  14. S. Girard and L. Menneteau, Smoothed extreme value estimators of non uniform boundaries with applications to star-shaped supports estimation. Submitted.
  15. A. Hardy and J.P. Rasson, Une nouvelle approche des problèmes de classification automatique. Statist. Anal. Données 7 (1982) 41–56.
  16. P. Hall, M. Nussbaum and S.E. Stern, On the estimation of a support curve of indeterminate sharpness. J. Multivariate Anal. 62 (1997) 204–232. [CrossRef] [MathSciNet]
  17. P. Hall, B.U. Park and S.E. Stern, On polynomial estimators of frontiers and boundaries. J. Multivariate Anal. 66 (1998) 71–98. [CrossRef] [MathSciNet]
  18. W. Härdle, Applied nonparametric regression. Cambridge University Press, Cambridge (1990).
  19. W. Härdle, P. Hall and L. Simar, Iterated bootstrap with application to frontier models. J. Productivity Anal. 6 (1995) 63–76. [CrossRef]
  20. W. Härdle, B.U. Park and A.B. Tsybakov, Estimation of a non sharp support boundaries. J. Multivariate Anal. 43 (1995) 205–218.
  21. J.A. Hartigan, Clustering Algorithms. Wiley, Chichester (1975).
  22. W. Kallenberg, Intermediate efficiency theory and examples. Ann. Statist. 11 (1983) 170–182. [CrossRef] [MathSciNet]
  23. W. Kallenberg, On moderate deviation theory in estimation. Ann. Statist. 11 (1983) 498–504. [CrossRef] [MathSciNet]
  24. A.P. Korostelev, L. Simar and A.B. Tsybakov, Efficient estimation of monotone boundaries. Ann. Statist. 23 (1995) 476–489. [CrossRef] [MathSciNet]
  25. A.P. Korostelev and A.B. Tsybakov, Minimax theory of image reconstruction, in Lecture Notes in Statistics 82, Springer-Verlag, New York (1993).
  26. A.P. Korostelev and A.B. Tsybakov, Asymptotic efficiency of the estimation of a convex set. Problems Inform. Transmission 30 (1994) 317–327. [MathSciNet]
  27. E. Mammen and A.B. Tsybakov, Asymptotical minimax recovery of sets with smooth boundaries. Ann. Statist. 23 (1995) 502–524. [CrossRef] [MathSciNet]
  28. L. Menneteau, Limit theorems for piecewise constant kernel smoothed estimates of point process boundaries. Technical Report (2007).
  29. A. Mokkadem and M. Pelletier, Moderate deviations for the kernel mode estimator and some applications. J. Statist. Planning Inference 135 (2005) 276–299. [CrossRef]
  30. V.V. Petrov, Limit theorems of probability theory. Sequences of independent random variables. Oxford Studies in Probability, (1995) 4.
  31. G.R. Shorack and J.A. Wellner, Empirical processes with applications to statistics. Wiley, New York (1986).
  32. G.P. Tolstov, Fourier series. 2nd ed. New York: Dover Publications (1976).
  33. A.B. Tsybakov, On nonparametric estimation of density level sets. Ann. Statist. 25 (1997) 948–969. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.