Free Access
Issue
ESAIM: PS
Volume 12, April 2008
Page(s) 154 - 172
DOI https://doi.org/10.1051/ps:2007053
Published online 23 January 2008
  1. D. Andrews, Non strong mixing autoregressive processes. J. Appl. Probab. 21 (1984) 930–934. [CrossRef] [MathSciNet]
  2. P. Billingsley, Convergence of Probability Measures. Wiley, New-York (1968).
  3. A.V. Bulinski and A.P. Shashkin, Rates in the central limit theorem for weakly dependent random variables. J. Math. Sci. 122 (2004) 3343–3358. [CrossRef] [MathSciNet]
  4. A.V. Bulinski and A.P. Shashkin, Strong Invariance Principle for Dependent Multi-indexed Random Variables. Doklady Mathematics 72 (2005) 503–506.
  5. C. Coulon-Prieur and P. Doukhan, A triangular central limit theorem under a new weak dependence condition. Stat. Prob. Letters 47 (2000) 61–68. [CrossRef] [MathSciNet]
  6. P. Doukhan, Mixing: Properties and Examples. Lect. Notes Statis. 85 (1994).
  7. P. Doukhan, Models inequalities and limit theorems for stationary sequences, in Theory and applications of long range dependence, Doukhan et al. Ed., Birkhäuser (2003) 43–101.
  8. P. Doukhan and G. Lang, Rates in the empirical central limit theorem for stationary weakly dependent random fields. Stat. Inference Stoch. Process. 5 (2002) 199–228. [CrossRef] [MathSciNet]
  9. P. Doukhan and S. Louhichi, A new weak dependence condition and applications to moment inequalities. Stoch. Proc. Appl. 84 (1999) 313–342. [CrossRef] [MathSciNet]
  10. P. Doukhan, H. Madre and M. Rosenbaum, Weak dependence for infinite ARCH-type bilinear models. Statistics 41 (2007) 31–45. [CrossRef] [MathSciNet]
  11. P. Doukhan, G. Teyssiere and P. Winant, Vector valued ARCH(∞) processes, in Dependence in Probability and Statistics, P. Bertail, P. Doukhan and P. Soulier Eds. Lecture Notes in Statistics, Springer, New York (2006).
  12. P. Doukhan and O. Wintenberger, An invariance principle for weakly dependent stationary general models. Prob. Math. Stat. 27 (2007) 45–73.
  13. L. Giraitis and D. Surgailis, ARCH-type bilinear models with double long memory. Stoch. Proc. Appl. 100 (2002) 275–300. [CrossRef]
  14. M.H. Neumann and E. Paparoditis, Goodness-of-fit tests for Markovian time series models. Technical Report No. 16/2005. Department of Mathematics and Statistics, University of Cyprus (2005).
  15. V. Petrov, Limit theorems of probability theory. Clarendon Press, Oxford (1995).
  16. B.L.S. Prakasha Rao, Nonparametric functional estimation. Academic Press, New York (1983).
  17. E. Rio, About the Lindeberg method for strongly mixing sequences. ESAIM: PS 1 (1997) 35–61. [CrossRef] [EDP Sciences]
  18. E. Rio, Théorie asymptotique pour des processus aléatoires faiblement dépendants. SMAI, Math. Appl. 31 (2000).
  19. P.M. Robinson, Nonparametric estimators for time series. J. Time Ser. Anal. 4 (1983) 185–207. [CrossRef] [MathSciNet]
  20. M.S. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete 31 (1975) 237–302.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.