Free Access
Volume 12, April 2008
Page(s) 412 - 437
Published online 25 July 2008
  1. N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular variation, Encyclopedia of Mathematics and its applications 27. Cambridge University Press, Cambridge (1987). [Google Scholar]
  2. A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein, Metastability in reversible diffusion processes I: Sharp asymptotics for capacities and exit times. Eur. Math. Soc. 6 (2004) 399–424. [CrossRef] [Google Scholar]
  3. A. Bovier, V. Gayrard and M. Klein, Metastability in reversible diffusion processes II: Precise asymptotics for small eigenvalues. Eur. Math. Soc. 7 (2005) 69–99. [CrossRef] [Google Scholar]
  4. V.A. Buslov and K.A. Makarov, Life times and lower eigenvalues of an operator of small diffusion. Matematicheskie Zametki 51 (1992) 20–31. [Google Scholar]
  5. S. Cerrai, Second order PDE's in finite and infinite dimension. A probabilistic approach. Lect. Notes Math. Springer, Berlin Heidelberg (2001). [Google Scholar]
  6. A.V. Chechkin, V.Yu Gonchar, J. Klafter and R. Metzler, Barrier crossings of a Lévy flight. EPL 72 (2005) 348–354. [Google Scholar]
  7. M.V. Day, On the exponential exit law in the small parameter exit problem. Stochastics 8 (1983) 297–323. [MathSciNet] [Google Scholar]
  8. P.D. Ditlevsen, Anomalous jumping in a double-well potential. Phys. Rev. E 60 (1999) 172–179. [CrossRef] [Google Scholar]
  9. P.D. Ditlevsen, Observation of α-stable noise induced millenial climate changes from an ice record. Geophysical Research Letters 26 (1999) 1441–1444. [Google Scholar]
  10. M.I. Freidlin and A.D. Wentzell, Random perturbations of dynamical systems, Grundlehren der Mathematischen Wissenschaften 260. Springer, New York, NY, second edition (1998). [Google Scholar]
  11. A. Galves, E. Olivieri and M.E. Vares, Metastability for a class of dynamical systems subject to small random perturbations. Ann. Probab. 15 (1987) 1288–1305. [CrossRef] [MathSciNet] [Google Scholar]
  12. V.V. Godovanchuk, Asymptotic probabilities of large deviations due to large jumps of a Markov process. Theory Probab. Appl. 26 (1982) 314–327. [CrossRef] [Google Scholar]
  13. P. Imkeller and I. Pavlyukevich, First exit times of SDEs driven by stable Lévy processes. Stochastic Process. Appl. 116 (2006) 611–642. [CrossRef] [MathSciNet] [Google Scholar]
  14. O. Kallenberg, Foundations of modern probability. Probability and Its Applications. Springer, second edition (2002). [Google Scholar]
  15. C. Kipnis and C.M. Newman, The metastable behavior of infrequently observed, weakly random, one-dimensional diffusion processes. SIAM J. Appl. Math. 45 (1985) 972–982. [CrossRef] [MathSciNet] [Google Scholar]
  16. V.N. Kolokol'tsov and K.A. Makarov, Asymptotic spectral analysis of a small diffusion operator and the life times of the corresponding diffusion process. Russian J. Math. Phys. 4 (1996) 341–360. [MathSciNet] [Google Scholar]
  17. P. Mathieu, Spectra, exit times and long time asymptotics in the zero-white-noise limit. Stoch. Stoch. Rep. 55 1–20 (1995). [Google Scholar]
  18. Ph.E. Protter, Stochastic integration and differential equations, Applications of Mathematics 21. Springer, Berlin, second edition (2004). [Google Scholar]
  19. G. Samorodnitsky and M. Grigoriu, Tails of solutions of certain nonlinear stochastic differential equations driven by heavy tailed Lévy motions. Stoch. Process. Appl. 105 (2003) 69–97. [CrossRef] [Google Scholar]
  20. A.D. Wentzell, Limit theorems on large deviations for Markov stochastic processes, Mathematics and Its Applications (Soviet Series) 38. Kluwer Academic Publishers, Dordrecht (1990). [Google Scholar]
  21. M. Williams, Asymptotic exit time distributions. SIAM J. Appl. Math. 42 (1982) 149–154. [CrossRef] [MathSciNet] [Google Scholar]
  22. Ai H. Xia, Weak convergence of jump processes, in Séminaire de Probabilités, XXVI, Lect. Notes Math. 1526 Springer, Berlin (1992) 32–46. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.