Free Access
Volume 12, April 2008
Page(s) 412 - 437
Published online 25 July 2008
  1. N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular variation, Encyclopedia of Mathematics and its applications 27. Cambridge University Press, Cambridge (1987).
  2. A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein, Metastability in reversible diffusion processes I: Sharp asymptotics for capacities and exit times. Eur. Math. Soc. 6 (2004) 399–424. [CrossRef]
  3. A. Bovier, V. Gayrard and M. Klein, Metastability in reversible diffusion processes II: Precise asymptotics for small eigenvalues. Eur. Math. Soc. 7 (2005) 69–99. [CrossRef]
  4. V.A. Buslov and K.A. Makarov, Life times and lower eigenvalues of an operator of small diffusion. Matematicheskie Zametki 51 (1992) 20–31.
  5. S. Cerrai, Second order PDE's in finite and infinite dimension. A probabilistic approach. Lect. Notes Math. Springer, Berlin Heidelberg (2001).
  6. A.V. Chechkin, V.Yu Gonchar, J. Klafter and R. Metzler, Barrier crossings of a Lévy flight. EPL 72 (2005) 348–354. [CrossRef] [EDP Sciences] [MathSciNet]
  7. M.V. Day, On the exponential exit law in the small parameter exit problem. Stochastics 8 (1983) 297–323. [MathSciNet]
  8. P.D. Ditlevsen, Anomalous jumping in a double-well potential. Phys. Rev. E 60 (1999) 172–179. [CrossRef]
  9. P.D. Ditlevsen, Observation of α-stable noise induced millenial climate changes from an ice record. Geophysical Research Letters 26 (1999) 1441–1444. [CrossRef]
  10. M.I. Freidlin and A.D. Wentzell, Random perturbations of dynamical systems, Grundlehren der Mathematischen Wissenschaften 260. Springer, New York, NY, second edition (1998).
  11. A. Galves, E. Olivieri and M.E. Vares, Metastability for a class of dynamical systems subject to small random perturbations. Ann. Probab. 15 (1987) 1288–1305. [CrossRef] [MathSciNet]
  12. V.V. Godovanchuk, Asymptotic probabilities of large deviations due to large jumps of a Markov process. Theory Probab. Appl. 26 (1982) 314–327. [CrossRef]
  13. P. Imkeller and I. Pavlyukevich, First exit times of SDEs driven by stable Lévy processes. Stochastic Process. Appl. 116 (2006) 611–642. [CrossRef] [MathSciNet]
  14. O. Kallenberg, Foundations of modern probability. Probability and Its Applications. Springer, second edition (2002).
  15. C. Kipnis and C.M. Newman, The metastable behavior of infrequently observed, weakly random, one-dimensional diffusion processes. SIAM J. Appl. Math. 45 (1985) 972–982. [CrossRef] [MathSciNet]
  16. V.N. Kolokol'tsov and K.A. Makarov, Asymptotic spectral analysis of a small diffusion operator and the life times of the corresponding diffusion process. Russian J. Math. Phys. 4 (1996) 341–360. [MathSciNet]
  17. P. Mathieu, Spectra, exit times and long time asymptotics in the zero-white-noise limit. Stoch. Stoch. Rep. 55 1–20 (1995).
  18. Ph.E. Protter, Stochastic integration and differential equations, Applications of Mathematics 21. Springer, Berlin, second edition (2004).
  19. G. Samorodnitsky and M. Grigoriu, Tails of solutions of certain nonlinear stochastic differential equations driven by heavy tailed Lévy motions. Stoch. Process. Appl. 105 (2003) 69–97. [CrossRef]
  20. A.D. Wentzell, Limit theorems on large deviations for Markov stochastic processes, Mathematics and Its Applications (Soviet Series) 38. Kluwer Academic Publishers, Dordrecht (1990).
  21. M. Williams, Asymptotic exit time distributions. SIAM J. Appl. Math. 42 (1982) 149–154. [CrossRef] [MathSciNet]
  22. Ai H. Xia, Weak convergence of jump processes, in Séminaire de Probabilités, XXVI, Lect. Notes Math. 1526 Springer, Berlin (1992) 32–46.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.