Free Access
Volume 12, April 2008
Page(s) 438 - 463
Published online 25 July 2008
  1. H. Akaike, A new look at the statistical model identification. IEEE Trans. Autom. Control 19 (1974) 716–723. [NASA ADS] [CrossRef] [MathSciNet]
  2. P. Alquier, Iterative Feature Selection In Least Square Regression Estimation. Ann. Inst. H. Poincaré B: Probab. Statist. 44 (2008) 47–88. [CrossRef]
  3. A. Barron, A. Cohen, W. Dahmen and R. DeVore, Adaptative Approximation and Learning by Greedy Algorithms, preprint (2006).
  4. G. Blanchard, P. Massart, R. Vert and L. Zwald, Kernel Projection Machine: A New Tool for Pattern Recognition. Proceedings of NIPS (2004).
  5. B.E. Boser, I.M. Guyon and V.N. Vapnik, A training algorithm for optimal margin classifiers, in Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, D. Haussler (ed.), ACM Press (1992) 144–152.
  6. T.T. Cai and L.D. Brown, Wavelet Estimation for Samples with Random Uniform Design. Stat. Probab. Lett. 42 (1999) 313–321. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  7. O. Catoni, Statistical learning theory and stochastic optimization, Lecture Notes, Saint-Flour Summer School on Probability Theory (2001), Springer.
  8. O. Catoni, PAC-Bayesian Inductive and Transductive Learning, manuscript (2006).
  9. O. Catoni, A PAC-Bayesian approach to adaptative classification, preprint Laboratoire de Probabilités et Modèles Aléatoires (2003).
  10. A. Cohen, Wavelet methods in numerical analysis, in Handbook of numerical analysis, Vol. VII, North-Holland, Amsterdam (2000) 417–711.
  11. I. Daubechies, Ten Lectures on Wavelets. SIAM, Philadelphia (1992).
  12. D.L. Donoho and I.M. Johnstone, Ideal Spatial Adaptation by Wavelets. Biometrika 81 (1994) 425–455. [CrossRef] [MathSciNet]
  13. D.L. Donoho, I.M. Johnstone, G. Kerkyacharian and D. Picard, Density Estimation by Wavelet Thresholding. Ann. Statist. 24 (1996) 508–539. [CrossRef] [MathSciNet]
  14. I.J. Good and R.A. Gaskins, Nonparametric roughness penalties for probability densities. Biometrika 58 (1971) 255–277. [MathSciNet]
  15. W. Härdle, G. Kerkyacharian, D. Picard and A.B. Tsybakov, Wavelets, Approximations and Statistical Applications. Lecture Notes in Statistics, Springer (1998).
  16. J.S. Marron and S.P. Wand, Exact Mean Integrated Square Error. Ann. Statist. 20 (1992) 712–736. [CrossRef] [MathSciNet]
  17. D. Panchenko, Symmetrization Approach to Concentration Inequalities for Empirical Processes. Ann. Probab. 31 (2003) 2068–2081. [CrossRef] [MathSciNet]
  18. R Development Core Team, R: A Language And Environment For Statistical Computing, R Foundation For Statistical Computing, Vienna, Austria, 2004. URL
  19. G. Ratsch, C. Schafer, B. Scholkopf and S. Sonnenburg, Large Scale Multiple Kernel Learning. J. Machine Learning Research 7 (2006) 1531–1565.
  20. J. Rissanen, Modeling by shortest data description. Automatica 14 (1978) 465–471. [CrossRef]
  21. M. Seeger, PAC-Bayesian Generalization Error Bounds for Gaussian Process Classification. J. Machine Learning Res. 3 (2002) 233–269. [CrossRef]
  22. M. Tipping, The Relevance Vector Machine, in Advances in Neural Information Processing Systems, San Mateo, CA (2000). Morgan Kaufmann.
  23. A.B. Tsybakov, Introduction à l'estimation non-paramétrique. Mathématiques et Applications, Springer (2004).
  24. V.N. Vapnik, The nature of statistical learning theory. Springer Verlag (1998).
  25. Zhao Zhang, Su Zhang, Chen-xi Zhang and Ya-zhu Chen, SVM for density estimation and application to medical image segmentation. J. Zhejiang Univ. Sci. B 7 (2006).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.