Free Access
Volume 12, April 2008
Page(s) 438 - 463
Published online 25 July 2008
  1. H. Akaike, A new look at the statistical model identification. IEEE Trans. Autom. Control 19 (1974) 716–723. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  2. P. Alquier, Iterative Feature Selection In Least Square Regression Estimation. Ann. Inst. H. Poincaré B: Probab. Statist. 44 (2008) 47–88. [CrossRef] [Google Scholar]
  3. A. Barron, A. Cohen, W. Dahmen and R. DeVore, Adaptative Approximation and Learning by Greedy Algorithms, preprint (2006). [Google Scholar]
  4. G. Blanchard, P. Massart, R. Vert and L. Zwald, Kernel Projection Machine: A New Tool for Pattern Recognition. Proceedings of NIPS (2004). [Google Scholar]
  5. B.E. Boser, I.M. Guyon and V.N. Vapnik, A training algorithm for optimal margin classifiers, in Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, D. Haussler (ed.), ACM Press (1992) 144–152. [Google Scholar]
  6. T.T. Cai and L.D. Brown, Wavelet Estimation for Samples with Random Uniform Design. Stat. Probab. Lett. 42 (1999) 313–321. [CrossRef] [Google Scholar]
  7. O. Catoni, Statistical learning theory and stochastic optimization, Lecture Notes, Saint-Flour Summer School on Probability Theory (2001), Springer. [Google Scholar]
  8. O. Catoni, PAC-Bayesian Inductive and Transductive Learning, manuscript (2006). [Google Scholar]
  9. O. Catoni, A PAC-Bayesian approach to adaptative classification, preprint Laboratoire de Probabilités et Modèles Aléatoires (2003). [Google Scholar]
  10. A. Cohen, Wavelet methods in numerical analysis, in Handbook of numerical analysis, Vol. VII, North-Holland, Amsterdam (2000) 417–711. [Google Scholar]
  11. I. Daubechies, Ten Lectures on Wavelets. SIAM, Philadelphia (1992). [Google Scholar]
  12. D.L. Donoho and I.M. Johnstone, Ideal Spatial Adaptation by Wavelets. Biometrika 81 (1994) 425–455. [CrossRef] [MathSciNet] [Google Scholar]
  13. D.L. Donoho, I.M. Johnstone, G. Kerkyacharian and D. Picard, Density Estimation by Wavelet Thresholding. Ann. Statist. 24 (1996) 508–539. [Google Scholar]
  14. I.J. Good and R.A. Gaskins, Nonparametric roughness penalties for probability densities. Biometrika 58 (1971) 255–277. [MathSciNet] [Google Scholar]
  15. W. Härdle, G. Kerkyacharian, D. Picard and A.B. Tsybakov, Wavelets, Approximations and Statistical Applications. Lecture Notes in Statistics, Springer (1998). [Google Scholar]
  16. J.S. Marron and S.P. Wand, Exact Mean Integrated Square Error. Ann. Statist. 20 (1992) 712–736. [Google Scholar]
  17. D. Panchenko, Symmetrization Approach to Concentration Inequalities for Empirical Processes. Ann. Probab. 31 (2003) 2068–2081. [CrossRef] [MathSciNet] [Google Scholar]
  18. R Development Core Team, R: A Language And Environment For Statistical Computing, R Foundation For Statistical Computing, Vienna, Austria, 2004. URL [Google Scholar]
  19. G. Ratsch, C. Schafer, B. Scholkopf and S. Sonnenburg, Large Scale Multiple Kernel Learning. J. Machine Learning Research 7 (2006) 1531–1565. [Google Scholar]
  20. J. Rissanen, Modeling by shortest data description. Automatica 14 (1978) 465–471. [CrossRef] [Google Scholar]
  21. M. Seeger, PAC-Bayesian Generalization Error Bounds for Gaussian Process Classification. J. Machine Learning Res. 3 (2002) 233–269. [CrossRef] [Google Scholar]
  22. M. Tipping, The Relevance Vector Machine, in Advances in Neural Information Processing Systems, San Mateo, CA (2000). Morgan Kaufmann. [Google Scholar]
  23. A.B. Tsybakov, Introduction à l'estimation non-paramétrique. Mathématiques et Applications, Springer (2004). [Google Scholar]
  24. V.N. Vapnik, The nature of statistical learning theory. Springer Verlag (1998). [Google Scholar]
  25. Zhao Zhang, Su Zhang, Chen-xi Zhang and Ya-zhu Chen, SVM for density estimation and application to medical image segmentation. J. Zhejiang Univ. Sci. B 7 (2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.