Free Access
Issue
ESAIM: PS
Volume 12, April 2008
Page(s) 94 - 126
DOI https://doi.org/10.1051/ps:2007046
Published online 23 January 2008
  1. F. Biagini, Y. Hu, B. Øksendal, and A. Sulem, A stochastic maximum principle for processes driven by fractional Brownian motion. Stoch. Processes Appl. 100 (2002) 233–253. [CrossRef] [Google Scholar]
  2. H. Cramer and M.R. Leadbetter, Stationary and related stochastic processes. John Wiley & Sons, Inc. (1967). [Google Scholar]
  3. M.H.A. Davis, Linear Estimation and Stochastic Control. Chapman and Hall (1977). [Google Scholar]
  4. L. Decreusefond and A.S. Üstünel, Stochastic analysis of the fractional Brownian motion. Potential Analysis 10 (1999) 177–214. [CrossRef] [MathSciNet] [Google Scholar]
  5. T.E. Duncan, Y. Hu and B. Pasik-Duncan, Stochastic calculus for fractional Brownian motion I. Theory. SIAM J. Control Optim. 38 (2000) 582–612. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Gripenberg and I. Norros, On the prediction of fractional Brownian motion. J. Appl. Prob. 33 (1996) 400–410. [CrossRef] [MathSciNet] [Google Scholar]
  7. M.L. Kleptsyna and A. Le Breton, Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Stat. Inf. Stoch. Processes 5 (2002) 229–248. [CrossRef] [Google Scholar]
  8. M.L. Kleptsyna and A. Le Breton, Extension of the Kalman-Bucy filter to elementary linear systems with fractional Brownian noises. Stat. Inf. Stoch. Processes 5 (2002) 249–271. [CrossRef] [Google Scholar]
  9. M.L. Kleptsyna, A. Le Breton and M.C. Roubaud, General approach to filtering with fractional Brownian noises – Application to linear systems. Stoch. Stoch. Reports 71 (2000) 119–140. [Google Scholar]
  10. M.L. Kleptsyna, A. Le Breton and M. Viot, About the linear-quadratic regulator problem under a fractional Brownian perturbation. ESAIM: PS 7 (2003) 161–170. [CrossRef] [EDP Sciences] [Google Scholar]
  11. M.L. Kleptsyna, A. Le Breton and M. Viot, Asymptotically optimal filtering in linear systems with fractional Brownian noises. Stat. Oper. Res. Trans. 28 (2004) 177–190. [Google Scholar]
  12. M.L. Kleptsyna, A. Le Breton and M. Viot, On the infinite time horizon linear-quadratic regulator problem under a fractional Brownian perturbation. ESAIM: PS 9 (2005) 185–205. [CrossRef] [EDP Sciences] [Google Scholar]
  13. R.S. Liptser and A.N. Shiryaev, Statistics of Random Processes. Springer-Verlag (1978). [Google Scholar]
  14. R.S. Liptser and A.N. Shiryaev, Theory of Martingales. Kluwer Academic Publ., Dordrecht (1989). [Google Scholar]
  15. I. Norros, E. Valkeila and J. Virtamo, An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5 (1999) 571–587. [CrossRef] [MathSciNet] [Google Scholar]
  16. C.J. Nuzman and H.V. Poor, Linear estimation of self-similar processes via Lamperti's transformation. J. Appl. Prob. 37 (2000) 429–452. [CrossRef] [MathSciNet] [Google Scholar]
  17. W.M. Wonham, On the separation principle of stochastic control. SIAM J. Control 6 (1968) 312–326. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.