Free Access
Volume 12, April 2008
Page(s) 58 - 93
Published online 13 November 2007
  1. J. Bertoin, Lévy processes, Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996).
  2. J. Bertoin and R.A. Doney, Cramér's estimate for Lévy processes. Statist. Probab. Lett. 21 (1994) 363–365. [CrossRef] [MathSciNet]
  3. H. Cramér, Collective risk theory: A survey of the theory from the point of view of the theory of stochastic processes. Skandia Insurance Company, Stockholm, (1955). Reprinted from the Jubilee Volume of Försäkringsaktiebolaget Skandia.
  4. H. Cramér, On the mathematical Theory of Risk. Skandia Jubilee Volume, Stockholm (1930).
  5. R.A. Doney, Hitting probabilities for spectrally positive Lévy processes. J. London Math. Soc. 44 (1991) 566–576. [CrossRef] [MathSciNet]
  6. R.A. Doney and A.E. Kyprianou, Overshoots and undershoots of Lévy processes. Ann. Appl. Probab. 16 (2006) 91–106. [CrossRef] [MathSciNet]
  7. R.A. Doney and R.A. Maller. Stability of the overshoot for Lévy processes. Ann. Probab. 30 (2002) 188–212.
  8. F. Dufresne and H.U. Gerber, Risk theory for the compound Poisson process that is perturbed by diffusion. Insurance Math. Econom. 10 (1991) 51–59. [CrossRef] [MathSciNet]
  9. I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1980). Corrected and enlarged edition edited by Alan Jeffrey, Incorporating the fourth edition edited by Yu. V. Geronimus [Yu. V. Geronimus] and M. Yu. Tseytlin [M. Yu. Tseĭtlin], Translated from Russian.
  10. P.S. Griffin and R.A. Maller, On the rate of growth of the overshoot and the maximum partial sum. Adv. in Appl. Probab. 30 (1998) 181–196. [CrossRef] [MathSciNet]
  11. A. Gut, Stopped random walks, Applied Probability, vol. 5, A Series of the Applied Probability Trust. Springer-Verlag, New York, (1988). Limit theorems and applications.
  12. I. Karatzas and S.E. Shreve. Brownian motion and stochastic calculus, Graduate Texts in Mathematics, vol.113. Springer-Verlag, New York, second edition (1991).
  13. A.E. Kyprianou, Introductory lectures on fluctuations of Lévy processes with applications. Universitext. Springer-Verlag, Berlin (2006).
  14. N.N. Lebedev, Special functions and their applications. Dover Publications Inc., New York (1972). Revised edition, translated from the Russian and edited by Richard A. Silverman, Unabridged and corrected republication.
  15. M. Loève, Probability theory. II. Springer-Verlag, New York, fourth edition (1978). Graduate Texts in Mathematics, Vol. 46.
  16. F. Lundberg, I- Approximerad Framställning av Sannolikhetsfunktionen. II- Aterförsäkering av Kollectivrisker. Almqvist and Wiksell, Uppsala (1903).
  17. T. Rolski, H. Schmidli, V. Schmidt and J. Teugels, Stochastic processes for insurance and finance. Wiley Series in Probability and Statistics. John Wiley & Sons Ltd., Chichester (1999).
  18. K. Sato, Lévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, (1999). Translated from the 1990 Japanese original, Revised by the author.
  19. A.G. Sveshnikov and A.N. Tikhonov, The theory of functions of a complex variable. “Mir”, Moscow (1982). Translated from the Russian by George Yankovsky [G. Yankovskiĭ].
  20. A. Volpi, Processus associés à l'équation de diffusion rapide; Étude asymptotique du temps de ruine et de l'overshoot. Univ. Henri Poincaré, Nancy I, Vandoeuvre les Nancy (2003). Thèse.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.