Free Access
Issue
ESAIM: PS
Volume 12, April 2008
Page(s) 12 - 29
DOI https://doi.org/10.1051/ps:2007032
Published online 13 November 2007
  1. S. Aida, Uniform positivity improving property, Sobolev inequalities and spectral gaps. J. Funct. Anal. 158 (1998) 152–185. [CrossRef] [MathSciNet] [Google Scholar]
  2. D. Bakry, L'hypercontractivité et son utilisation en théorie des semigroupes. In Lectures on Probability theory. École d'été de Probabilités de St-Flour 1992, Lect. Notes Math. 1581 (1994) 1–114. [Google Scholar]
  3. F. Barthe, P. Cattiaux and C. Roberto, Concentration for independent random variables with heavy tails. AMRX 2005 (2005) 39–60. [Google Scholar]
  4. F. Barthe, P. Cattiaux and C. Roberto, Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry. Rev. Mat. Iber. 22 (2006) 993–1067. [Google Scholar]
  5. F. Barthe, P. Cattiaux and C. Roberto, Isoperimetry between exponential and Gaussian. EJP 12 (2007) 1212–1237. [Google Scholar]
  6. W. Bryc and A. Dembo, Large deviations for quadratic functionals of gaussian processes. J. Theoret. Prob. 10 (1997) 307–332. [Google Scholar]
  7. P. Cattiaux, I. Gentil and G. Guillin, Weak logarithmic-Sobolev inequalities and entropic convergence. Prob. Theory Related Fields 139 (2007) 563–603. [CrossRef] [Google Scholar]
  8. E.B. Davies, Heat kernels and spectral theory. Cambridge University Press (1989). [Google Scholar]
  9. J.D. Deuschel and D.W. Stroock, Large Deviations. Academic Press, London, Pure Appl. Math. 137 (1989). [Google Scholar]
  10. H. Djellout, A. Guillin and L. Wu, Transportation cost information inequalities for random dynamical systems and diffusions. Ann. Prob. 334 (2002) 1025–1028. [Google Scholar]
  11. P. Doukhan, Mixing, Properties and Examples. Springer-Verlag, Lect. Notes Statist. 85 (1994). [Google Scholar]
  12. B. Franchi, Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations. T.A.M.S. 327 (1991) 125–158. [CrossRef] [Google Scholar]
  13. F.Z. Gong and F.Y. Wang, Functional inequalities for uniformly integrable semigroups and applications to essential spectrums. Forum Math. 14 (2002) 293–313. [CrossRef] [MathSciNet] [Google Scholar]
  14. C. Léonard, Convex conjugates of integral functionals. Acta Math. Hungar. 93 (2001) 253–280. [CrossRef] [MathSciNet] [Google Scholar]
  15. C. Léonard, Minimizers of energy functionals. Acta Math. Hungar. 93 (2001) 281–325. [CrossRef] [MathSciNet] [Google Scholar]
  16. P. Lezaud, Chernoff and Berry-Eessen inequalities for Markov processes. ESAIM Probab. Statist. 5 (2001) 183–201. [Google Scholar]
  17. G. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications. Rev. Mat. Iber. 8 (1992) 367–439. [Google Scholar]
  18. E. Rio, Théorie asymptotique des processus aléatoires faiblement dépendants. Springer-Verlag, Math. Appl. 31 (2000). [Google Scholar]
  19. R.T. Rockafellar, Integrals which are convex functionals. Pacific J. Math. 24 (1968) 525–539. [Google Scholar]
  20. R.T. Rockafellar, Integrals which are convex functionals II. Pacific J. Math. 39 (1971) 439–469. [MathSciNet] [Google Scholar]
  21. M. Röckner and F.Y. Wang, Weak Poincaré inequalities and L2-convergence rates of Markov semigroups. J. Funct. Anal. 185 (2001) 564–603. [CrossRef] [MathSciNet] [Google Scholar]
  22. G. Royer, Une initiation aux inégalités de Sobolev logarithmiques. S.M.F., Paris (1999). [Google Scholar]
  23. F.Y. Wang, Functional inequalities for empty essential spectrum. J. Funct. Anal. 170 (2000) 219–245. [CrossRef] [MathSciNet] [Google Scholar]
  24. L. Wu, A deviation inequality for non-reversible Markov process. Ann. Inst. Henri Poincaré. Prob. Stat. 36 (2000) 435–445. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.