Free Access
Issue
ESAIM: PS
Volume 12, April 2008
Page(s) 30 - 50
DOI https://doi.org/10.1051/ps:2007031
Published online 13 November 2007
  1. P. Abry and F. Sellan, The wavelet-based synthesis for fractional Brownian motion proposed by F. Sellan and Y. Meyer: remarks and fast implementation. Appl. Comput. Harmon. Anal. 3 (1996) 377–383. [CrossRef] [MathSciNet]
  2. A. Ayache, A. Bonami and A. Estrade, Identification and series decomposition of anisotropic Gaussian fields. Proceedings of the Catania ISAAC05 congress (2005).
  3. J.M. Bardet, G. Lang, G. Oppenheim, A. Philippe, S. Stoev and M.S. Taqqu, Semi-parametric estimation of the long-range dependence parameter: a survey. In Theory and applications of long-range dependence, Birkhäuser Boston (2003) 557–577.
  4. A. Begyn, Asymptotic development and central limit theorem for quadratic variations of gaussian processes. To appear in Bernoulli (2006).
  5. A. Benassi, S. Cohen, J. Istas and S. Jaffard, Identification of filtered white noises. Stochastic Process. Appl. 75 (1998) 31–49. [CrossRef] [MathSciNet]
  6. A. Benassi, S. Jaffard and D. Roux, Elliptic Gaussian random processes. Rev. Mathem. Iberoamericana. 13 (1997) 19–89.
  7. H. Biermé, Champs aléatoires : autosimilarité, anisotropie et étude directionnelle. PhD thesis, Université d'Orléans, www.math-info.univ-paris5.fr/~bierme (2005).
  8. A. Bonami and A. Estrade, Anisotropic analysis of some Gaussian models. J. Fourier Anal. Appl. 9 (2003) 215–236. [CrossRef] [MathSciNet]
  9. G. Chan, An effective method for simulating Gaussian random fields, in Proceedings of the statistical Computing section, 133–138, www.stat.uiowa.edu/~grchan/ (1999). Amerir. Statist.
  10. J.F. Coeurjolly, Inférence statistique pour les mouvements browniens fractionnaires et multifractionnaires. PhD thesis, Université Joseph Fourier (2000).
  11. J.F. Coeurjolly, Estimating the parameters of fractional Brownian motion by discrete variations of its sample paths. Stat. Inference Stoch. Process. 4 (2001) 199–227. [CrossRef] [MathSciNet]
  12. D. Dacunha-Castelle and M. Duflo, Probabilités et statistiques, Vol. 2. Masson (1983).
  13. C.R. Dietrich and G.N. Newsam, Fast and exact simulation of stationary gaussian processes through circulant embedding of the covariance matrix. SIAM J. Sci. Comput. 18 (1997) 1088–1107. [CrossRef] [MathSciNet]
  14. N. Enriquez, A simple construction of the fractional brownian motion. Stochastic Process. Appl. 109 (2004) 203–223. [CrossRef] [MathSciNet]
  15. J. Istas and G. Lang, Quadratic variations and estimation of the local Hölder index of a Gaussian process. Ann. Inst. Henri Poincaré, Prob. Stat. 33 (1997) 407–436.
  16. R. Jennane, R. Harba, E. Perrin, A. Bonami and A. Estrade, Analyse de champs browniens fractionnaires anisotropes. 18e colloque du GRETSI (2001) 99–102.
  17. L.M. Kaplan and C.C.J. Kuo, An Improved Method for 2-d Self-Similar Image Synthesis. IEEE Trans. Image Process. 5 (1996) 754–761. [CrossRef] [PubMed]
  18. J.T. Kent and A.T.A. Wood, Estimating the fractal dimension of a locally self-similar Gaussian process by using increments. J. Roy. Statist. Soc. Ser. B 59 (1997) 679–699. [MathSciNet]
  19. G. Lang and F. Roueff, Semi-parametric estimation of the Hölder exponent of a stationary Gaussian process with minimax rates. Stat. Inference Stoch. Process. 4 (2001) 283–306. [CrossRef] [MathSciNet]
  20. S. Leger, Analyse stochastique de signaux multi-fractaux et estimations de paramètres. Ph.D. thesis, Université d'Orléans, http://www.univ-orleans.fr/mapmo/publications/leger/these.php (2000).
  21. B.B. Mandelbrot and J. Van Ness, Fractional Brownian motion, fractionnal noises and applications. Siam Review 10 (1968) 422–437. [NASA ADS] [CrossRef] [MathSciNet]
  22. Y. Meyer, F. Sellan and M.S. Taqqu, Wavelets, Generalised White Noise and Fractional Integration: The Synthesis of Fractional Brownian Motion. J. Fourier Anal. Appl. 5 (1999) 465–494. [CrossRef] [MathSciNet]
  23. I. Norros and P. Mannersalo, Simulation of Fractional Brownian Motion with Conditionalized Random Midpoint Displacement. Technical report, Advances in Performance analysis, http://vtt.fi/tte/tte21:traffic/rmdmn.ps (1999).
  24. R.F. Peltier and J. Lévy Véhel, Multifractional Brownian motion: definition and preliminary results. Technical report, INRIA, http://www.inria.fr/rrrt/rr-2645.html (1996).
  25. E. Perrin, R. Harba, C. Berzin-Joseph, I. Iribarren and A. Bonami, nth-order fractional Brownian motion and fractional Gaussian noises. IEEE Trans. Sign. Proc. 45 (2001) 1049–1059. [CrossRef]
  26. E. Perrin, R. Harba, R. Jennane and I. Iribarren, Fast and Exact Synthesis for 1-D Fractional Brownian Motion and Fractional Gaussian Noises. IEEE Signal Processing Letters 9 (2002) 382–384. [CrossRef]
  27. V. Pipiras, Wavelet-based simulation of fractional Brownian motion revisited. Preprint, http://www.stat.unc.edu/faculty/pipiras (2004).
  28. A.G. Ramm and A.I. Katsevich, The Radon Transform and Local Tomography. CRC Press (1996).
  29. M.L. Stein, Fast and exact simulation of fractional Brownian surfaces. J. Comput. Graph. Statist. 11 (2002) 587–599. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.