Free Access
Issue
ESAIM: PS
Volume 12, April 2008
Page(s) 1 - 11
DOI https://doi.org/10.1051/ps:2007030
Published online 13 November 2007
  1. A. Alfonsi, On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11 (2005) 355–384. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Berkaoui, Euler scheme for solutions of stochastic differential equations. Potugalia Mathematica Journal 61 (2004) 461–478. [Google Scholar]
  3. M. Bossy and A. Diop, Euler scheme for one dimensional SDEs with a diffusion coefficient function of the form |x|α, a in [ 1/2,1). Annals Appl. Prob. (Submitted). [Google Scholar]
  4. M. Bossy, E. Gobet and D. Talay, A symmetrized Euler scheme for an efficient approximation of reflected diffusions. J. Appl. Probab. 41 (2004) 877–889. [CrossRef] [MathSciNet] [Google Scholar]
  5. J. Cox, J.E. Ingersoll and S.A. Ross, A theory of the term structure of the interest rates. Econometrica 53 (1985) 385–407. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Deelstra and F. Delbaen, Convergence of discretized stochastic (interest rate) processes with stochastic drift term. Appl. Stochastic Models Data Anal. 14 (1998) 77–84. [CrossRef] [MathSciNet] [Google Scholar]
  7. O. Faure, Simulation du Mouvement Brownien et des Diffusions. Ph.D. thesis, École nationale des ponts et chaussées (1992). [Google Scholar]
  8. P.S. Hagan, D. Kumar, A.S. Lesniewski and D.E. Woodward, Managing smile risk. WILMOTT Magazine (September, 2002). [Google Scholar]
  9. J.C. Hull and A. White, Pricing interest-rate derivative securities. Rev. Finan. Stud. 3 (1990) 573–592. [CrossRef] [Google Scholar]
  10. I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus. Springer-Verlag, New York (1988). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.