Free Access
Issue
ESAIM: PS
Volume 11, February 2007
Special Issue: "Stochastic analysis and mathematical finance" in honor of Nicole El Karoui's 60th birthday
Page(s) 427 - 447
DOI https://doi.org/10.1051/ps:2007028
Published online 17 August 2007
  1. B. Arouna, Robbins-Monro algorithms and variance reduction in Finance. J. Computational Finance 7 (2003) 1245–1255. [Google Scholar]
  2. B. Arouna, Adaptative Monte Carlo method, A variance reduction technique. Monte Carlo Methods Appl. 10 (2004) 1–24. [CrossRef] [MathSciNet] [Google Scholar]
  3. V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations (i): convergence rate of the distribution function. Probability Theory and Related Fields 104 (1996a) 43–60. [CrossRef] [MathSciNet] [Google Scholar]
  4. V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations (ii): convergence rate of the density. Probability Theory and Related Fields 104 (1996b) 98–128. [Google Scholar]
  5. M. Bossy, E. Gobet and D. Talay, Symmetrized Euler scheme for an efficient approximation of reflected diffusions. J. Appl. Probab. 41 (2004) 877–889. [CrossRef] [MathSciNet] [Google Scholar]
  6. J. Bucklew, Large Deviation Techniques in Decision, Simulation and Estimation. John Wiley, New York (1990). [Google Scholar]
  7. O. Cappé, A. Guillin, J.-M. Marin and C. Robert, Population Monte Carlo. J. Comput. Graph. Statist. 13 (2004) 907–929. [CrossRef] [MathSciNet] [Google Scholar]
  8. O. Cappé, E. Moulines and T. Rydèn, Inference in Hidden Markov Models. Springer-Verlag, New York (2005). [Google Scholar]
  9. J. Cox, J. Ingersoll, and A. Ross, A theory of the term structure of interest rates. Econometrica 53 (1985) 385–408. [CrossRef] [MathSciNet] [Google Scholar]
  10. P. Del Moral, A. Doucet, and A. Jasra, Sequential Monte Carlo samplers. J. Royal Statist. Soc. Series B 68 (2006) 411–436. [CrossRef] [Google Scholar]
  11. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications. Jones and Barlett Publishers, Inc., Boston (1993). [Google Scholar]
  12. R. Douc, A. Guillin, J.-M. Marin and C. Robert Convergence of adaptive mixtures of importance sampling schemes. Ann. Statist. 35 (2007). [Google Scholar]
  13. P. Glasserman, Monte Carlo Methods in Financial Engineering. Springer-Verlag (2003) [Google Scholar]
  14. Y. Iba, Population-based Monte Carlo algorithms. Trans. Japanese Soc. Artificial Intell. 16 (2000) 279–286. [CrossRef] [Google Scholar]
  15. P. Jackel Monte Carlo Methods in Finance. John Wiley and Sons (2002). [Google Scholar]
  16. B. Lapeyre, E. Pardoux and R. Sentis Méthodes de Monte Carlo pour les équations de transport et de diffusion. Mathématiques et Applications, Vol. 29. Springer Verlag (1998). [Google Scholar]
  17. C .Robert and G. Casella, Monte Carlo Statistical Methods. Springer-Verlag, New York, second edition (2004). [Google Scholar]
  18. D. Rubin, A noniterative sampling importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: the SIR algorithm. (In the discussion of Tanner and Wong paper) J. American Statist. Assoc. 82 (1987) 543–546. [Google Scholar]
  19. D. Rubin, Using the SIR algorithm to simulate posterior distributions. In Bernardo, J., Degroot, M., Lindley, D., and Smith, A. Eds., Bayesian Statistics 3: Proceedings of the Third Valencia International Meeting, June 1–5, 1987. Clarendon Press (1988). [Google Scholar]
  20. R. Rubinstein, Simulation and the Monte Carlo Method. J. Wiley, New York (1981). [Google Scholar]
  21. R. Rubinstein and D. Kroese, The Cross-Entropy Method. Springer-Verlag, New York (2004). [Google Scholar]
  22. Y. Su and M. Fu, Optimal importance sampling in securities pricing. J. Computational Finance 5 (2002) 27–50. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.