Free Access
Volume 11, February 2007
Special Issue: "Stochastic analysis and mathematical finance" in honor of Nicole El Karoui's 60th birthday
Page(s) 448 - 465
Published online 17 August 2007
  1. A. Ayache, S. Leger and M. Pontier, Drap Brownien fractionnaire. Potential Anal. 178 (2002) 31–43. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Ayache and Y. Xiao, Asymptotic properties and Hausdorff dimensions of fractional Brownian sheets. J. Fourier Anal. Appl. 11 (2005) 407–439. [CrossRef] [MathSciNet] [Google Scholar]
  3. E. Belinsky and W. Linde, Small Ball Probabilities of Fractional Brownian Sheets via Fractional Integration Operators. J. Theoret. Probab. 15 (2002) 589–612. [CrossRef] [MathSciNet] [Google Scholar]
  4. C. Borell, Convex measures on locally convex space. Math. Ark. Math. 12 (1974) 239–252. [CrossRef] [Google Scholar]
  5. P. Cheridito, Mixed fractional Brownian motion. Bernoulli 7 (2001) 913–934. [CrossRef] [MathSciNet] [Google Scholar]
  6. N.J. Cutland, P.E. Kopp and W. Willinger, Stock price returns and the Joseph effect: a fractional version of the Black-Scholes model. in Seminar on Stochastic Analysis, Random Fields and Applications, Progr. Probab. E. Bolthausen, M. Dozziand F. Russo Eds., Basel: Birkhauser 36 (1995) 327–351. [Google Scholar]
  7. C. El-Nouty, On the lower classes of fractional Brownian motion. Studia Sci. Math. Hungar. 37 (2001) 363–390. [MathSciNet] [Google Scholar]
  8. C. El-Nouty, Lower classes of fractional Brownian motion under Hölder norms, Limit Theorems in Probability and Statistics, Balatonlelle, 1999, I. Berkes, E. Csáki, M. Csörgő Eds., János Bolyai Mathematical Society, Budapest (2002) 7–34. [Google Scholar]
  9. C. El-Nouty, The fractional mixed fractional Brownian motion. Statist. Probab. Lett. 65 (2003) 111–120. [CrossRef] [MathSciNet] [Google Scholar]
  10. C. El-Nouty, Lower classes of integrated fractional Brownian motion. Studia Sci. Math. Hungar. 41 (2004) 17–38. [CrossRef] [MathSciNet] [Google Scholar]
  11. C. El-Nouty, The influence of a log-type small ball factor in the study of the lower classes. Bull. Sci. math. 129 (2005) 318–338. [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Gassmann and D. Bürki, Experimental investigation of atmospheric dispersion over the Swiss Plain – Experiment SIESTA, Boundary-Layer Meteorology, Springer Netherlands 41 (1987) 295–307. [Google Scholar]
  13. F. Gassmann, P. Gaglione, S.E. Gryning, H. Hasenjäger, E. Lyck, H. Richner, B. Neiniger, S. Vogt and P. Thomas, Experimental Investigation of Atmospheric Dispersion over Complex Terrain in a Prealpine Region (experiment SIESTA) Swiss Federal Institute for Reactor Research EIR 604 (1986). [Google Scholar]
  14. T. Kühn and W. Linde, Optimal series representation of fractional Brownian sheets. Bernoulli 8 (2002) 669–696. [MathSciNet] [Google Scholar]
  15. M. Ledoux and M. Talagrand, Probability in Banach spaces. Springer Verlag, Berlin (1994). [Google Scholar]
  16. W.V. Li, A Gaussian correlation inequality and its applications to small ball probabilities. Elect. Comm. in Probab. 4 (1999) 111–118. [Google Scholar]
  17. W.V. Li and W. Linde, Existence of small ball constants for fractional Brownian motions. C. R. Acad. Sci. Paris 326 (1998) 1329–1334. [Google Scholar]
  18. W.V. Li and Q.M. Shao, Gaussian Processes: Inequalities, Small Ball Probabilities and Applications, Stochastic Processes: Theory and Methods, Handbook of Statistics 19 (2001). [Google Scholar]
  19. M.A. Lifshits, Gaussian Random Functions. Kluwer Academic Publishers, Dordrecht (1995). [Google Scholar]
  20. D.M. Mason and Z. Shi, Small Deviations for Some Multi-Parameter Gaussian Processes. J. Theoret. Probab. 14 (2001) 213–239. [CrossRef] [MathSciNet] [Google Scholar]
  21. D. Monrad and H. Rootzen, Small values of Gaussian processes and functional laws of the iterated logarithm. Probab. Theory Related Fields 101 (1995) 173–192. [CrossRef] [MathSciNet] [Google Scholar]
  22. P. Révész, Random walk in random and non-random environments, World Scientific Publishing Co., Teaneck, NJ (1990). [Google Scholar]
  23. P.A. Samuelson, Rational theory of warrant pricing. Indust. Management Rev. 6 (1965) 13–31. [Google Scholar]
  24. M. Talagrand, Lower classes of fractional Brownian motion. J. Theoret. Probab. 9 (1996) 191–213. [CrossRef] [MathSciNet] [Google Scholar]
  25. Y. Xiao and T. Zhang, Local times of fractional Brownian sheets. Probab. Theory Related Fields 124 (2002) 204–226. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.