Free Access
Volume 11, February 2007
Special Issue: "Stochastic analysis and mathematical finance" in honor of Nicole El Karoui's 60th birthday
Page(s) 55 - 79
Published online 01 March 2007
  1. R.L. Dobrushin, Gibbsian random fields. The general case. Functional Anal. Appl. 3 (1969) 22–28. [CrossRef] [Google Scholar]
  2. M. Fradon and S. Rœlly, Infinite dimensional diffusion processes with singular interaction. Bull. Sci. math. 124 (2000) 287–318. [CrossRef] [MathSciNet] [Google Scholar]
  3. J. Fritz, Gradient Dynamics of Infinite Points Systems. Ann Probab. 15 (1987) 478–514. [CrossRef] [MathSciNet] [Google Scholar]
  4. H.-O. Georgii, Canonical Gibbs measures. Lecture Notes in Mathematics 760, Springer-Verlag, Berlin (1979). [Google Scholar]
  5. R. Lang, Unendlich-dimensionale Wienerprozesse mit Wechselwirkung. Z. Wahrsch. Verw. Geb. 38 (1977) 55–72. [CrossRef] [Google Scholar]
  6. D. Ruelle, Superstable Interactions in Classical Statistical Mechanics. Comm. Math. Phys. 18 (1970) 127–159. [Google Scholar]
  7. Y. Saisho and H. Tanaka, Stochastic Differential Equations for Mutually Reflecting Brownian Balls. Osaka J. Math. 23 (1986) 725–740. [MathSciNet] [Google Scholar]
  8. H. Tanemura, A System of Infinitely Many Mutually Reflecting Brownian Balls. Probability Theory and Related Fields 104 (1996) 399–426. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.