Free Access
Volume 11, February 2007
Special Issue: "Stochastic analysis and mathematical finance" in honor of Nicole El Karoui's 60th birthday
Page(s) 80 - 88
Published online 01 March 2007
  1. J. Amendinger, Martingale representation theorems for initially enlarged filtrations. Stoch. Proc. Appl. 89 (2000) 101–116. [CrossRef] [Google Scholar]
  2. J. Amendinger, P. Imkeller and M. Schweizer, Additional logarithmic utility of an insider. Stoch. Proc. Appl. 75 (1998) 263–286. [CrossRef] [Google Scholar]
  3. K. Back, Insider trading in continuous time. Rev. Financial Stud. 5 (1992) 387–409. [CrossRef] [Google Scholar]
  4. B. Biais, T. Mariotti, G. Plantin and J.C. Rochet, Dynamic security design. Rev. Economic Stud. to appear. [Google Scholar]
  5. K.H. Cho and N. EL Karoui, Insider trading and nonlinear equilibria:uniqueness: single auction case. Annales d'économie et de statistique 60 (2000) 21–41. [Google Scholar]
  6. K.H. Cho, Continuous auctions and insider trading: uniqueness and risk aversion. Finance and Stochastics 7 (2003) 47–71. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Chaleyat-Maurel and T. Jeulin, Grossissement gaussien de la filtration brownienne, in Séminaire de Calcul Stochastique 1982-83, Paris, Lect. Notes Math. 1118 (1985) 59–109. [Google Scholar]
  8. N. El Karoui, Les aspects probabilistes du contrôle stochastique, in Ecole d'été de Saint Flour 1979, Lect. Notes Math. 872 (1981) 73–238. [Google Scholar]
  9. H. Föllmer and P. Imkeller, Anticipation cancelled by a Girsanov transformation: a paradox on Wiener space. Ann. Inst. Henri Poincaré 29 (1993) 569–586. [Google Scholar]
  10. W.H. Fleming and R.W. Rishel, Deterministic and Stochastic Optimal Control. Springer, Berlin (1975). [Google Scholar]
  11. A. Grorud and M. Pontier, Comment détecter le délit d'initié ? CRAS, Sér. 1 324 (1997) 1137–1142. [Google Scholar]
  12. A. Grorud and M. Pontier, Insider trading in a continuous time market model. IJTAF. 1 (1998) 331–347. [Google Scholar]
  13. A. Grorud and M. Pontier, Probabilité neutre au risque et asymétrie d'information. CRAS, Sér. 1 329 (1999) 1009–1014. [Google Scholar]
  14. A. Grorud and M. Pontier, Asymmetrical information and incomplete markets. IJTAF. 4 (2001) 285–302. [Google Scholar]
  15. C. Hillairet, Existence of an equilibrium with discontinuous prices, asymmetric information and non trivial initial σ-fields. Math. Finance 15 (2005) 99–117. [CrossRef] [MathSciNet] [Google Scholar]
  16. J. Jacod, Grossissement initial, Hypothèse H' et Théorème de Girsanov, in Séminaire de Calcul Stochastique 1982–83, Paris, Lect. Notes Math. 1118 (1985) 15–35. [Google Scholar]
  17. T. Jeulin, Semi-martingales et grossissement de filtration. Springer-Verlag (1980). [Google Scholar]
  18. A.S. Kyle, Continuous auctions and insider trading. Econometrica 53 (1985) 1315–1335. [CrossRef] [Google Scholar]
  19. I. Karatzas and I. Pikovsky, Anticipative portfolio optimization. Adv. Appl. Probab. 28 (1996) 1095–1122. [CrossRef] [Google Scholar]
  20. G. Lasserre, Quelques modèles d'équilibre avec asymétrie d'information. Thèse soutenue à l'université de Paris VII, le 16 décembre 2003. [Google Scholar]
  21. G. Lasserre, Asymmetric information and imperfect competition in a continuous time multivariate security model, Finance and Stochastics 8 (2004) 285–309. [Google Scholar]
  22. P. Protter, Stochastic Integration and Differential Equations. Springer-Verlag (1990). [Google Scholar]
  23. M. Schweizer, On the minimal martingale measure and the Föllmer-Schweizer decomposition. Stochastic Anal. Appl. 13 (1995) 573–599. [CrossRef] [MathSciNet] [Google Scholar]
  24. M. Yor, Grossissement de filtrations et absolue continuité de noyaux, in Séminaire de Calcul Stochastique 1982-83, Paris, Lect Notes Math. 1118 (1985) 6–14. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.