Free Access
Volume 11, February 2007
Special Issue: "Stochastic analysis and mathematical finance" in honor of Nicole El Karoui's 60th birthday
Page(s) 40 - 54
Published online 01 March 2007
  1. G. Barone-Adesi and R.E. Whaley, Efficient Analytic Approximation of American Option Values. J. Finance 42 (1987) 301–320. [CrossRef] [Google Scholar]
  2. R. Bellman, Stability Theory of Differential Equations. McGraw-Hill (1953). [Google Scholar]
  3. E. Clement, D. Lamberton, P. Protter, An Analysis of a Least Square Regression Method for American Option Pricing. Finance and Stochastics 6 (2002) 449–471. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.-P. Fouque and C.-H. Han, A Control Variate Method to Evaluate Option Prices under Multi-Factor Stochastic Volatility Models, submitted, 2004. [Google Scholar]
  5. J.-P. Fouque and C.-H. Han, Variance Reduction for Monte Carlo Methods to Evaluate Option Prices under Multi-factor Stochastic Volatility Models. Quantitative Finance 4 (2004) 597–606. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.-P. Fouque, G. Papanicolaou and R. Sircar, Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press (2000). [Google Scholar]
  7. J.-P. Fouque, R. Sircar and K. Solna, Stochastic Volatility Effects on Defaultable Bonds. Appl. Math. Finance 13 (2006) 215–244. [CrossRef] [Google Scholar]
  8. J.-P. Fouque, G. Papanicolaou, R. Sircar and K. Solna, Multiscale Stochastic Volatility Asymptotics. SIAM J. Multiscale Modeling and Simulation 2 (2003) 22–42. [Google Scholar]
  9. P. Glasserman, Monte Carlo Methods in Financial Engineering. Springer Verlag (2003). [Google Scholar]
  10. F. Longstaff and E. Schwartz, Valuing American Options by Simulation: A Simple Least-Squares Approach. Rev. Financial Studies 14 (2001) 113–147. [CrossRef] [Google Scholar]
  11. B. Oksendal, Stochastic Differential Equations: An introduction with Applications. Universitext, 5th ed., Springer (1998). [Google Scholar]
  12. P. Wilmott , S. Howison and J. Dewynne, Mathematics of Financial Derivatives: A Student Introduction. Cambridge University Press (1995). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.