Free Access
Volume 10, September 2006
Page(s) 46 - 75
Published online 31 January 2006
  1. Y. Baraud, Non-asymptotic minimax rates of testing in signal detection. Bernoulli 8 (2002) 577–606. [MathSciNet] [Google Scholar]
  2. Y. Baraud, S. Huet, and B. Laurent, Adaptive tests of linear hypotheses by model selection. Ann. Statist. 31 (2003) 225–251. [CrossRef] [MathSciNet] [Google Scholar]
  3. L. Birgé, An alternative point of view on Lepski's method, in State of the Art in Probability and Statistics (Leiden, 1999), 113–133, IMS Lecture Notes Monogr. Ser. 36 (2000). [Google Scholar]
  4. P.J. Brockwell and R.A. Davis, Time series: theory and methods. Springer Series in Statistics. Springer-Verlag, New York, second edition (1991). [Google Scholar]
  5. R. Eubank and J. Hart, Testing goodness-of-fit in regression via order selection criteria. Ann. Stat. 20 (1992) 1412–1425. [CrossRef] [MathSciNet] [Google Scholar]
  6. J. Fan and Q. Yao, Nonlinear Time series. Springer series in Statistics. Springer-Verlag, New York, Nonparametric and parametric methods (2003). [Google Scholar]
  7. G. Gayraud and C. Pouet, Minimax testing composite null hypotheses in the discrete regression scheme. Math. Methods Stat. 10 (2001) 375–394. [Google Scholar]
  8. P. Gregory and T. Loredo, A new method for the detection of a periodic signal of unknown shape and period. The Astrophysical J. 398 (1992) 146–168. [CrossRef] [Google Scholar]
  9. W. Härdle and A. Kneip, Testing a regression model when we have smooth alternatives in mind. Scand. J. Stat. 26 (1999) 221–238. [CrossRef] [Google Scholar]
  10. J. Horowitz and V. Spokoiny, An adaptive, rate-optimal test of a parametric mean-regression model against a nonparametric alternative. Econometrica 69 (2001) 599–631. [CrossRef] [MathSciNet] [Google Scholar]
  11. Y. Ingster, Minimax nonparametric detection of signals in white Gaussian noise. Probl. Inf. Transm. 18 (1982) 130–140. [Google Scholar]
  12. Y. Ingster, Asymptotically minimax testing for nonparametric alternatives I-II-III. Math. Methods Statist. 2 (1993) 85–114, 171–189, 249–268. [MathSciNet] [Google Scholar]
  13. B. Laurent and P. Massart, Adaptive estimation of a quadratic functional by model selection. Ann. Statist. 28 (2000) 1302–1338. [Google Scholar]
  14. M. Lavielle and C. Lévy-Leduc, Semiparametric estimation of the frequency of unknown periodic functions and its application to laser vibrometry signals. IEEE Trans. Signal Proces. 53 (2005) 2306–2314. [CrossRef] [Google Scholar]
  15. O. Lepski and V. Spokoiny, Minimax nonparametric hypothesis testing: The case of an inhomogeneous alternative. Bernoulli 5 (1999) 333–358. [CrossRef] [MathSciNet] [Google Scholar]
  16. O. Lepski and A. Tsybakov, Asymptotically exact nonparametric hypothesis testing in sup-norm and at a fixed point. Probab. Theory Relat. Fields 117 (2000) 17–48. [Google Scholar]
  17. M. Prenat, Vibration modes and laser vibrometry performance in noise, in Proceedings of the Physics in Signal and Image Processing conference (PSIP'01), 23–24 janvier 2001, Marseille, France (2001). [Google Scholar]
  18. B.G. Quinn and E.J. Hannan, The estimation and tracking of frequency. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2001). [Google Scholar]
  19. V. Spokoiny, Adaptive hypothesis testing using wavelets. Ann. Stat. 24 (1996) 2477–2498. [Google Scholar]
  20. V. Spokoiny, Adaptive and spatially adaptive testing of a nonparametric hypothesis. Math. Methods Stat. 7 (1998) 245–273. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.