Free Access
Volume 10, September 2006
Page(s) 24 - 45
Published online 31 January 2006
  1. H. Akaike, A new look at the statistical model identification. IEEE Trans. Automatic Control 19 (1974) 716–723. [NASA ADS] [CrossRef] [MathSciNet]
  2. A.R. Barron, L. Birgé and P. Massart. Risk bounds for model selection via penalization. Probab. Theory Relat. Fields 113 (1999) 301–415. [CrossRef] [MathSciNet]
  3. L. Birgé and P. Massart, From model selection to adaptive estimation, in Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics, D. Pollard, E. Torgersen and G. Yang, Eds., Springer-Verlag, New York (1997) 55–87.
  4. L. Birgé and P. Massart, Gaussian model selection. J. Eur. Math. Soc. 3 (2001) 203–268. [CrossRef] [MathSciNet]
  5. G. Castellan, Modified Akaike's criterion for histogram density estimation. Technical Report. Université Paris-Sud, Orsay (1999).
  6. G. Castellan, Sélection d'histogrammes à l'aide d'un critère de type Akaike. CRAS 330 (2000) 729–732.
  7. J. Daly, The construction of optimal histograms. Commun. Stat., Theory Methods 17 (1988) 2921–2931.
  8. L. Devroye, A Course in Density Estimation. Birkhäuser, Boston (1987).
  9. L. Devroye, and L. Györfi, Nonparametric Density Estimation: The L1 View. John Wiley, New York (1985).
  10. L. Devroye and G. Lugosi, Combinatorial Methods in Density Estimation. Springer-Verlag, New York (2001).
  11. D. Freedman and P. Diaconis, On the histogram as a density estimator: L2 theory. Z. Wahrscheinlichkeitstheor. Verw. Geb. 57 (1981) 453–476. [CrossRef]
  12. P. Hall, Akaike's information criterion and Kullback-Leibler loss for histogram density estimation. Probab. Theory Relat. Fields 85 (1990) 449–467. [CrossRef]
  13. P. Hall and E.J. Hannan, On stochastic complexity and nonparametric density estimation. Biometrika 75 (1988) 705–714. [CrossRef] [MathSciNet]
  14. K. He and G. Meeden, Selecting the number of bins in a histogram: A decision theoretic approach. J. Stat. Plann. Inference 61 (1997) 49–59. [CrossRef]
  15. D.R.M. Herrick, G.P. Nason and B.W. Silverman, Some new methods for wavelet density estimation. Sankhya, Series A 63 (2001) 394–411.
  16. M.C. Jones, On two recent papers of Y. Kanazawa. Statist. Probab. Lett. 24 (1995) 269–271. [CrossRef] [MathSciNet]
  17. Y. Kanazawa, Hellinger distance and Akaike's information criterion for the histogram. Statist. Probab. Lett. 17 (1993) 293–298. [CrossRef] [MathSciNet]
  18. L.M. Le Cam, Asymptotic Methods in Statistical Decision Theory. Springer-Verlag, New York (1986).
  19. L.M. Le Cam and G.L. Yang, Asymptotics in Statistics: Some Basic Concepts. Second Edition. Springer-Verlag, New York (2000).
  20. J. Rissanen, Stochastic complexity and the MDL principle. Econ. Rev. 6 (1987) 85–102. [CrossRef]
  21. M. Rudemo, Empirical choice of histograms and kernel density estimators. Scand. J. Statist. 9 (1982) 65–78. [MathSciNet]
  22. D.W. Scott, On optimal and databased histograms. Biometrika 66 (1979) 605–610. [CrossRef] [MathSciNet]
  23. H.A. Sturges, The choice of a class interval. J. Am. Stat. Assoc. 21 (1926) 65–66.
  24. C.C. Taylor, Akaike's information criterion and the histogram. Biometrika. 74 (1987) 636–639. [CrossRef] [MathSciNet]
  25. G.R. Terrell, The maximal smoothing principle in density estimation. J. Am. Stat. Assoc. 85 (1990) 470–477. [CrossRef]
  26. M.P. Wand, Data-based choice of histogram bin width. Am. Statistician 51 (1997) 59–64. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.