Free Access
Issue
ESAIM: PS
Volume 10, September 2006
Page(s) 24 - 45
DOI https://doi.org/10.1051/ps:2006001
Published online 31 January 2006
  1. H. Akaike, A new look at the statistical model identification. IEEE Trans. Automatic Control 19 (1974) 716–723. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  2. A.R. Barron, L. Birgé and P. Massart. Risk bounds for model selection via penalization. Probab. Theory Relat. Fields 113 (1999) 301–415. [CrossRef] [MathSciNet] [Google Scholar]
  3. L. Birgé and P. Massart, From model selection to adaptive estimation, in Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics, D. Pollard, E. Torgersen and G. Yang, Eds., Springer-Verlag, New York (1997) 55–87. [Google Scholar]
  4. L. Birgé and P. Massart, Gaussian model selection. J. Eur. Math. Soc. 3 (2001) 203–268. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Castellan, Modified Akaike's criterion for histogram density estimation. Technical Report. Université Paris-Sud, Orsay (1999). [Google Scholar]
  6. G. Castellan, Sélection d'histogrammes à l'aide d'un critère de type Akaike. CRAS 330 (2000) 729–732. [Google Scholar]
  7. J. Daly, The construction of optimal histograms. Commun. Stat., Theory Methods 17 (1988) 2921–2931. [Google Scholar]
  8. L. Devroye, A Course in Density Estimation. Birkhäuser, Boston (1987). [Google Scholar]
  9. L. Devroye, and L. Györfi, Nonparametric Density Estimation: The L1 View. John Wiley, New York (1985). [Google Scholar]
  10. L. Devroye and G. Lugosi, Combinatorial Methods in Density Estimation. Springer-Verlag, New York (2001). [Google Scholar]
  11. D. Freedman and P. Diaconis, On the histogram as a density estimator: L2 theory. Z. Wahrscheinlichkeitstheor. Verw. Geb. 57 (1981) 453–476. [CrossRef] [Google Scholar]
  12. P. Hall, Akaike's information criterion and Kullback-Leibler loss for histogram density estimation. Probab. Theory Relat. Fields 85 (1990) 449–467. [CrossRef] [Google Scholar]
  13. P. Hall and E.J. Hannan, On stochastic complexity and nonparametric density estimation. Biometrika 75 (1988) 705–714. [CrossRef] [MathSciNet] [Google Scholar]
  14. K. He and G. Meeden, Selecting the number of bins in a histogram: A decision theoretic approach. J. Stat. Plann. Inference 61 (1997) 49–59. [CrossRef] [Google Scholar]
  15. D.R.M. Herrick, G.P. Nason and B.W. Silverman, Some new methods for wavelet density estimation. Sankhya, Series A 63 (2001) 394–411. [Google Scholar]
  16. M.C. Jones, On two recent papers of Y. Kanazawa. Statist. Probab. Lett. 24 (1995) 269–271. [CrossRef] [MathSciNet] [Google Scholar]
  17. Y. Kanazawa, Hellinger distance and Akaike's information criterion for the histogram. Statist. Probab. Lett. 17 (1993) 293–298. [CrossRef] [MathSciNet] [Google Scholar]
  18. L.M. Le Cam, Asymptotic Methods in Statistical Decision Theory. Springer-Verlag, New York (1986). [Google Scholar]
  19. L.M. Le Cam and G.L. Yang, Asymptotics in Statistics: Some Basic Concepts. Second Edition. Springer-Verlag, New York (2000). [Google Scholar]
  20. J. Rissanen, Stochastic complexity and the MDL principle. Econ. Rev. 6 (1987) 85–102. [CrossRef] [Google Scholar]
  21. M. Rudemo, Empirical choice of histograms and kernel density estimators. Scand. J. Statist. 9 (1982) 65–78. [MathSciNet] [Google Scholar]
  22. D.W. Scott, On optimal and databased histograms. Biometrika 66 (1979) 605–610. [CrossRef] [MathSciNet] [Google Scholar]
  23. H.A. Sturges, The choice of a class interval. J. Am. Stat. Assoc. 21 (1926) 65–66. [Google Scholar]
  24. C.C. Taylor, Akaike's information criterion and the histogram. Biometrika. 74 (1987) 636–639. [CrossRef] [MathSciNet] [Google Scholar]
  25. G.R. Terrell, The maximal smoothing principle in density estimation. J. Am. Stat. Assoc. 85 (1990) 470–477. [CrossRef] [Google Scholar]
  26. M.P. Wand, Data-based choice of histogram bin width. Am. Statistician 51 (1997) 59–64. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.