Free Access
Volume 10, September 2006
Page(s) 76 - 140
Published online 09 March 2006
  1. C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer, Sur les inégalités de Sobolev logarithmiques, Panoramas et Synthèses [Panoramas and Syntheses]. Société Mathématique de France, 10 Paris (2000). With a preface by Dominique Bakry and Michel Ledoux.
  2. R. Bott and J.P. Mayberry, Matrices and trees, in Economic activity analysis, O. Morgenstern Ed., John Wiley and Sons, Inc., New York (1954) 391–400.
  3. O. Catoni, Simulated annealing algorithms and Markov chains with rare transitions, in Séminaire de Probabilités, XXXIII, Lect. Notes Math. 1709 (1999) 69–119.
  4. R. Cerf, The dynamics of mutation-selection algorithms with large population sizes. Ann. Inst. H. Poincaré Probab. Statist. 32 (1996) 455–508. [MathSciNet]
  5. R. Cerf, A new genetic algorithm. Ann. Appl. Probab. 6 (1996) 778–817. [CrossRef] [MathSciNet]
  6. D. Concordet, Estimation de la densité du recuit simulé. Ann. Inst. H. Poincaré Probab. Statist. 30 (1994) 265–302. [MathSciNet]
  7. P. Del Moral, M. Ledoux and L. Miclo, On contraction properties of Markov kernels. Probab. Theory Related Fields 126 (2003) 395–420. [CrossRef] [MathSciNet]
  8. P. Del Moral and L. Miclo, On the convergence and applications of generalized simulated annealing. SIAM J. Control Optim. 37 (1999) 1222–1250 (electronic). [CrossRef] [MathSciNet]
  9. P. Del Moral and L. Miclo, Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to non-linear filtering, in Séminaire de Probabilités, XXXIV, Lect. Notes Math. 1729 (2000) 1–145.
  10. P. Del Moral and L. Miclo, Annealed Feynman-Kac models. Comm. Math. Phys. 235 (2003) 191–214. [CrossRef] [MathSciNet]
  11. P. Del Moral, Feynman-Kac formulae. Probability and its Applications (New York). Springer-Verlag, New York (2004). Genealogical and interacting particle systems with applications.
  12. P. Del Moral and A. Guionnet, On the stability of interacting processes with applications to filtering and genetic algorithms. Ann. Inst. H. Poincaré Probab. Statist. 37 (2001) 155–194. [CrossRef] [MathSciNet]
  13. P. Del Moral and L. Miclo, On the stability of nonlinear Feynman-Kac semigroups. Ann. Fac. Sci. Toulouse Math. 11 (2002) 135–175.
  14. Amir Dembo and Ofer Zeitouni, Large deviations techniques and applications, Applications of Mathematics (New York). Springer-Verlag, New York, second edition 38 (1998).
  15. P.Dupuis and R.S. Ellis, A weak convergence approach to the theory of large deviations. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons Inc., New York (1997). A Wiley-Interscience Publication.
  16. M.I. Freidlin and A.D. Wentzell, Random perturbations of dynamical systems, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York 260 (1984). Translated from the Russian by Joseph Szücs.
  17. B. Hajek, Cooling schedules for optimal annealing. Math. Oper. Res. 13 (1988) 311–329. [CrossRef] [MathSciNet]
  18. R. Holley and D. Stroock, Simulated annealing via Sobolev inequalities. Comm. Math. Phys. 115 (1988) 553–569. [CrossRef] [MathSciNet]
  19. T. Lindvall, Lectures on the coupling method. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Inc., New York (1992). A Wiley-Interscience Publication.
  20. L. Miclo, About relaxation time of finite generalized Metropolis algorithms. Ann. Appl. Probab. 12 (2002) 1492–1515. [CrossRef] [MathSciNet]
  21. L. Miclo, Une étude des algorithmes de recuit simulé sous-admissibles. Ann. Fac. Sci. Toulouse Math. 4 (1995) 819–877. [MathSciNet]
  22. L. Miclo, Sur les problèmes de sortie discrets inhomogènes. Ann. Appl. Probab. 6 (1996) 1112–1156. [CrossRef] [MathSciNet]
  23. L. Miclo, Sur les temps d'occupations des processus de Markov finis inhomogènes à basse température. Stoch. Stoch. Rep. 63 (1998) 65–137.
  24. L. Miclo, Une variante de l'inégalité de Cheeger pour les chaînes de Markov finies. ESAIM: Probab. Statist. 2 (1998) 1–21. (electronic). [CrossRef] [EDP Sciences] [MathSciNet]
  25. E. Seneta, Nonnegative matrices and Markov chains. Springer Series in Statistics. Springer-Verlag, New York, second edition, 1981.
  26. W. Stannat, On the convergence of genetic algorithms – a variational approach. Probab. Theory Related Fields 129 (2004) 113–132. [CrossRef] [MathSciNet]
  27. A. Trouvé, Cycle decompositions and simulated annealing. SIAM J. Control Optim. 34 (1996) 966–986. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.