Free Access
Volume 9, June 2005
Page(s) 283 - 306
Published online 15 November 2005
  1. S.G. Bobkov and F. Gotze, Exponential integrability and transportation cost related to logarithmic sobolev inequalities. J. Funct. Anal. 163 (1999) 1–28. [CrossRef] [MathSciNet] [Google Scholar]
  2. J.M. Borwein and A.S. Lewis, Duality relationships for entropy-like minimization problems. SIAM J. Control Optim. 29 (1991) 325–338. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.M. Borwein and A.S. Lewis, Partially-finite programming in L1 and the exitence of maximum entropy estimates. SIAM J. Optim. 3 (1993) 248–267. [CrossRef] [MathSciNet] [Google Scholar]
  4. P. Cattiaux and N. Gozlan, Deviations lower bounds and conditional principles. Prépublications de l'Université Paris 10, Nanterre (2002). [Google Scholar]
  5. I. Csiszar, I-divergence geometry of probability distributions and minimization problems. Ann. Prob. 3 (1975) 146–158. [Google Scholar]
  6. I. Csiszar, Sanov property, generalized I-projection and a conditional limit theorem. Ann. Prob. 12 (1984) 768–793. [Google Scholar]
  7. I. Csiszar, Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Statist. 19 (1991) 2032–2066. [CrossRef] [Google Scholar]
  8. I. Csiszar, F. Gamboa and E. Gassiat, Mem pixel correlated solutions for generalized moment and interpolation problems. IEEE Trans. Inform. Theory 45 (1999) 2253–2270. [CrossRef] [MathSciNet] [Google Scholar]
  9. D. Dacunha-Castelle and F. Gamboa, Maximum d'entropie et problèmes des moments. Ann. Inst. Henri Poincaré 26 (1990) 567–596. [Google Scholar]
  10. A. Dembo and O. Zeitouni, Large deviations techniques and applications. Second edition. Springer-Verlag (1998). [Google Scholar]
  11. J.D. Deuschel and D.W. Stroock, Large deviations. Academic Press (1989). [Google Scholar]
  12. R.S. Ellis, J. Gough and J.V. Pulé, The large deviation principle for measures with random weights. Rev. Math. Phys. 5 (1993) 659–692. [CrossRef] [MathSciNet] [Google Scholar]
  13. F. Gamboa, Méthode du maximum d'entropie sur la moyenne et applications. Thèse Orsay (1989). [Google Scholar]
  14. F. Gamboa and E. Gassiat, Maximum d'entropie et problèmes des moments: Cas multidimensionnel. Probab. Math. Statist. 12 (1991) 67–83. [MathSciNet] [Google Scholar]
  15. F. Gamboa and E. Gassiat, Bayesian methods and maximum entropy for ill-posed inverse problems. Ann. Statist. 25 (1997) 328–350. [CrossRef] [MathSciNet] [Google Scholar]
  16. N. Gozlan, Principe conditionnel de Gibbs pour des contraintes fines approchées et inégalités de transport. Université Paris 10-Nanterre (2005). [Google Scholar]
  17. J.B. Hirriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis. Springer-Verlag (2001). [Google Scholar]
  18. C. Léonard, Minimizer of energy functionals. Acta Math. Hungar. 93 (2001) 281–325. [CrossRef] [MathSciNet] [Google Scholar]
  19. C. Léonard, A convex optimization problem arising from probabilistic questions. Prépublications de l'Université Paris 10-Nanterre (2004). [Google Scholar]
  20. C. Léonard, Dominating points and entropic projections. Prépublications de l'Université Paris 10-Nanterre (2004). [Google Scholar]
  21. P. Massart, Saint-Flour Lecture Notes (2003). [Google Scholar]
  22. J. Najim, A Cramer type theorem for weighted random variables. Electronic J. Probab. 7 (2002). [Google Scholar]
  23. R.T. Rockafellar and R. Wets, Variational Analysis. Springer-Verlag (1997). [Google Scholar]
  24. D.W. Stroock and O. Zeitouni, Microcanonical distributions, Gibbs states and the equivalence of ensembles, R. Durret and H. Kesten Eds., Birkhäuser. Festschrift in honour of F. Spitzer (1991) 399–424. [Google Scholar]
  25. A. Van Der Vaart and J. Wellner, Weak convergence and empirical processes. Springer Series in Statistics. Springer (1995). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.