Free Access
Issue
ESAIM: PS
Volume 9, June 2005
Page(s) 307 - 322
DOI https://doi.org/10.1051/ps:2005014
Published online 15 November 2005
  1. P. Billingsley, Convergence of probability measures. Wiley, New York (1968). [Google Scholar]
  2. Z.W. Birnbaum and R. Pyke, On some distributions related to the statistic Formula . Ann. Math. Statist. 29 (1958) 179–187. [CrossRef] [MathSciNet] [Google Scholar]
  3. Z.W. Birnbaum and F.H. Tingey, One-sided confidence contours for probability distribution functions. Ann. Math. Statist. 22 (1951) 592–596. [CrossRef] [Google Scholar]
  4. F.P. Cantelli, Considerazioni sulla legge uniforme dei grandi numeri e sulla generalizzazione di un fondamentale teorema del sig. Paul Levy. Giorn. Ist. Ital. Attuari 4 (1933) 327–350. [Google Scholar]
  5. J. Donsker, Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statist. 23 (1952) 277–281. [CrossRef] [Google Scholar]
  6. R.M. Dudley, Weak convergence of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces. Illinois J. Math. 10 (1966) 109–126. [MathSciNet] [Google Scholar]
  7. R.M. Dudley, Measures on nonseparable metric spaces. Illinois J. Math. 11 (1967) 449–453. [MathSciNet] [Google Scholar]
  8. R.M. Dudley, Uniform central limit theorems. Cambridge University Press, New York (1999). [Google Scholar]
  9. M. Dwass, On several statistics related to empirical distribution functions. Ann. Math. Statist. 29 (1958) 188–191. [CrossRef] [MathSciNet] [Google Scholar]
  10. R. Dykstra and Ch. Carolan, The distribution of the argmax of two-sided Brownian motion with parabolic drift. J. Statist. Comput. Simul. 63 (1999) 47–58. [CrossRef] [Google Scholar]
  11. D. Ferger, The Birnbaum-Pyke-Dwass theorem as a consequence of a simple rectangle probability. Theor. Probab. Math. Statist. 51 (1995) 155–157. [Google Scholar]
  12. D. Ferger, Analysis of change-point estimators under the null hypothesis. Bernoulli 7 (2001) 487–506. [CrossRef] [MathSciNet] [Google Scholar]
  13. D. Ferger, A continuous mapping theorem for the argmax-functional in the non-unique case. Statistica Neerlandica 58 (2004) 83–96. [CrossRef] [MathSciNet] [Google Scholar]
  14. D. Ferger, Cube root asymptotics for argmin-estimators. Unpublished manuscript, Technische Universität Dresden (2005). [Google Scholar]
  15. V. Glivenko, Sulla determinazione empirica delle leggi die probabilita. Giorn. Ist. Ital. Attuari 4 (1933) 92–99. [Google Scholar]
  16. P. Groneboom, Brownian motion with a parabolic drift and Airy Functions. Probab. Th. Rel. Fields 81 (1989) 79–109. [CrossRef] [MathSciNet] [Google Scholar]
  17. P. Groneboom and J.A. Wellner, Computing Chernov's distribution. J. Comput. Graphical Statist. 10 (2001) 388–400. [CrossRef] [Google Scholar]
  18. J. Hoffman-Jørgensen, Stochastic processes on Polish spaces. (Published (1991): Various Publication Series No. 39, Matematisk Institut, Aarhus Universitet) (1984). [Google Scholar]
  19. I.A. Ibragimov and R.Z. Has'minskii, Statistical Estimation: Asymptotic Theory. Springer-Verlag, New York (1981). [Google Scholar]
  20. O. Kallenberg, Foundations of Modern Probability. Springer-Verlag, New York (1999). [Google Scholar]
  21. K. Knight, Epi-convergence in distribution and stochastic equi-semicontinuity. Technical Report, University of Toronto (1999) 1–22. [Google Scholar]
  22. A.N. Kolmogorov, Sulla determinazione empirica di una legge di distribuzione. Giorn. Ist. Ital. Attuari 4 (1933) 83–91. [Google Scholar]
  23. N.H. Kuiper, Alternative proof of a theorem of Birnbaum and Pyke. Ann. Math. Statist. 30 (1959) 251–252. [CrossRef] [MathSciNet] [Google Scholar]
  24. T. Lindvall, Weak convergence of probability measures and random functions in the function space D[0,∞). J. Appl. Prob. 10 (1973) 109–121. [CrossRef] [Google Scholar]
  25. P. Massart, The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18 (1990) 1269–1283. [CrossRef] [MathSciNet] [Google Scholar]
  26. G.Ch. Pflug, On an argmax-distribution connected to the Poisson process, in Proc. of the fifth Prague Conference on asymptotic statistics, P. Mandl, H. Husková Eds. (1993) 123–130. [Google Scholar]
  27. G.R. Shorack and J.A. Wellner, Empirical processes with applications to statistics. Wiley, New York (1986). [Google Scholar]
  28. N.V. Smirnov, Näherungsgesetze der Verteilung von Zufallsveränderlichen von empirischen Daten. Usp. Mat. Nauk. 10 (1944) 179–206. [Google Scholar]
  29. L. Takács, Combinatorial Methods in the theory of stochastic processes. Robert E. Krieger Publishing Company, Huntingtun, New York (1967). [Google Scholar]
  30. A.W. van der Vaart and J.A. Wellner, Weak convergence of empirical processes. Springer-Verlag, New York (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.