Free Access
Issue
ESAIM: PS
Volume 9, June 2005
Page(s) 307 - 322
DOI https://doi.org/10.1051/ps:2005014
Published online 15 November 2005
  1. P. Billingsley, Convergence of probability measures. Wiley, New York (1968).
  2. Z.W. Birnbaum and R. Pyke, On some distributions related to the statistic Formula . Ann. Math. Statist. 29 (1958) 179–187. [CrossRef] [MathSciNet]
  3. Z.W. Birnbaum and F.H. Tingey, One-sided confidence contours for probability distribution functions. Ann. Math. Statist. 22 (1951) 592–596. [CrossRef]
  4. F.P. Cantelli, Considerazioni sulla legge uniforme dei grandi numeri e sulla generalizzazione di un fondamentale teorema del sig. Paul Levy. Giorn. Ist. Ital. Attuari 4 (1933) 327–350.
  5. J. Donsker, Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statist. 23 (1952) 277–281. [CrossRef]
  6. R.M. Dudley, Weak convergence of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces. Illinois J. Math. 10 (1966) 109–126. [MathSciNet]
  7. R.M. Dudley, Measures on nonseparable metric spaces. Illinois J. Math. 11 (1967) 449–453. [MathSciNet]
  8. R.M. Dudley, Uniform central limit theorems. Cambridge University Press, New York (1999).
  9. M. Dwass, On several statistics related to empirical distribution functions. Ann. Math. Statist. 29 (1958) 188–191. [CrossRef] [MathSciNet]
  10. R. Dykstra and Ch. Carolan, The distribution of the argmax of two-sided Brownian motion with parabolic drift. J. Statist. Comput. Simul. 63 (1999) 47–58. [CrossRef]
  11. D. Ferger, The Birnbaum-Pyke-Dwass theorem as a consequence of a simple rectangle probability. Theor. Probab. Math. Statist. 51 (1995) 155–157.
  12. D. Ferger, Analysis of change-point estimators under the null hypothesis. Bernoulli 7 (2001) 487–506. [CrossRef] [MathSciNet]
  13. D. Ferger, A continuous mapping theorem for the argmax-functional in the non-unique case. Statistica Neerlandica 58 (2004) 83–96. [CrossRef] [MathSciNet]
  14. D. Ferger, Cube root asymptotics for argmin-estimators. Unpublished manuscript, Technische Universität Dresden (2005).
  15. V. Glivenko, Sulla determinazione empirica delle leggi die probabilita. Giorn. Ist. Ital. Attuari 4 (1933) 92–99.
  16. P. Groneboom, Brownian motion with a parabolic drift and Airy Functions. Probab. Th. Rel. Fields 81 (1989) 79–109. [CrossRef] [MathSciNet]
  17. P. Groneboom and J.A. Wellner, Computing Chernov's distribution. J. Comput. Graphical Statist. 10 (2001) 388–400. [CrossRef]
  18. J. Hoffman-Jørgensen, Stochastic processes on Polish spaces. (Published (1991): Various Publication Series No. 39, Matematisk Institut, Aarhus Universitet) (1984).
  19. I.A. Ibragimov and R.Z. Has'minskii, Statistical Estimation: Asymptotic Theory. Springer-Verlag, New York (1981).
  20. O. Kallenberg, Foundations of Modern Probability. Springer-Verlag, New York (1999).
  21. K. Knight, Epi-convergence in distribution and stochastic equi-semicontinuity. Technical Report, University of Toronto (1999) 1–22.
  22. A.N. Kolmogorov, Sulla determinazione empirica di una legge di distribuzione. Giorn. Ist. Ital. Attuari 4 (1933) 83–91.
  23. N.H. Kuiper, Alternative proof of a theorem of Birnbaum and Pyke. Ann. Math. Statist. 30 (1959) 251–252. [CrossRef] [MathSciNet]
  24. T. Lindvall, Weak convergence of probability measures and random functions in the function space D[0,∞). J. Appl. Prob. 10 (1973) 109–121. [CrossRef]
  25. P. Massart, The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18 (1990) 1269–1283. [CrossRef] [MathSciNet]
  26. G.Ch. Pflug, On an argmax-distribution connected to the Poisson process, in Proc. of the fifth Prague Conference on asymptotic statistics, P. Mandl, H. Husková Eds. (1993) 123–130.
  27. G.R. Shorack and J.A. Wellner, Empirical processes with applications to statistics. Wiley, New York (1986).
  28. N.V. Smirnov, Näherungsgesetze der Verteilung von Zufallsveränderlichen von empirischen Daten. Usp. Mat. Nauk. 10 (1944) 179–206.
  29. L. Takács, Combinatorial Methods in the theory of stochastic processes. Robert E. Krieger Publishing Company, Huntingtun, New York (1967).
  30. A.W. van der Vaart and J.A. Wellner, Weak convergence of empirical processes. Springer-Verlag, New York (1996).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.