Free Access
Volume 7, March 2003
Page(s) 239 - 250
Published online 15 May 2003
  1. P. Assouad, Deux remarques sur l'estimation. C. R. Acad. Sci. Paris Sér. I Math. 296 (1983) 1021-1024. [Google Scholar]
  2. L. Birgé, Sur un théorème de minimax et son application aux tests. Probab. Math. Statist. 3 (1984) 259-282. [MathSciNet] [Google Scholar]
  3. L. Birgé and P. Massart, An adaptative compression algorithm in Besov spaces. Constr. Approx. 16 (2000) 1-36. [CrossRef] [MathSciNet] [Google Scholar]
  4. M.S. Birman and M.Z. Solomiak, Piecewise-polynomial approximation of functions of the classes Wp. Mat. Sbornik 73 (1967) 295-317. [CrossRef] [Google Scholar]
  5. A. Cohen, R. DeVore and W. Dahmen, Multiscale methods on bounded domains. Trans. AMS 352 (2000) 3651-3685. [CrossRef] [Google Scholar]
  6. A. Cohen, W. Dahmen, I. Daubechies and R. DeVore, Tree approximation and optimal encoding. Appl. Comput. Harmon. Anal. 11 (2001) 192-226. [CrossRef] [MathSciNet] [Google Scholar]
  7. T.A. Cover and J.A. Thomas, Element of Information Theory. Wiley Interscience (1991). [Google Scholar]
  8. B. Delyon and A. Juditski, On minimax wavelet estimators. Appl. Comput. Harmon. Anal. 3 (1996) 215-228. [CrossRef] [MathSciNet] [Google Scholar]
  9. R. DeVore, R. Kyriazis and P. Wang, Multiscale characterization of Besov spaces on bounded domains. J. Approx. Theory 93 (1998) 273-292. [CrossRef] [MathSciNet] [Google Scholar]
  10. R. DeVore, Nonlinear approximation. Cambridge University Press, Acta Numer. 7 (1998) 51-150. [Google Scholar]
  11. R. DeVore and G. Lorentz, Constructive Approximation. Springer-Verlag, New York (1993). [Google Scholar]
  12. D.L. Donoho, Unconditional bases and bit-level compression. Appl. Comput. Harmon. Anal. 3 (1996) 388-392. [CrossRef] [MathSciNet] [Google Scholar]
  13. W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 (1963) 13-30. [Google Scholar]
  14. W. Härdle, G. Kerkyacharian, D. Picard and A. Tsybakov, Wavelet, Approximation and Statistical Applications. Springer Verlag, New York, Lecture Notes in Statist. 129 (1998). [Google Scholar]
  15. G. Kerkyacharian and D. Picard, Thresholding algorithms, maxisets and well-concentrated bases, with discussion. Test 9 (2000) 283-345. [CrossRef] [MathSciNet] [Google Scholar]
  16. G. Kerkyacharian and D. Picard, Minimax or maxisets? Bernoulli 8 (2002) 219-253. [Google Scholar]
  17. G. Kerkyacharian and D. Picard, Entropy, Universal coding, Approximation and bases properties. Technical Report (2001). [Google Scholar]
  18. G. Kerkyacharian and D. Picard, Density Estimation by Kernel and Wavelets methods - Optimality of Besov spaces. Statist. Probab. Lett. 18 (1993) 327-336. [Google Scholar]
  19. A.N. Kolmogorov and V.M. Tikhomirov, π-entropy and π-capacity. Uspekhi Mat. Nauk 14 (1959) 3-86. (Engl. Translation: Amer. Math. Soc. Transl. Ser. 2 17, 277-364.) [Google Scholar]
  20. L. Le Cam, Convergence of estimator under dimensionality restrictions. Ann. Statist. 1 (1973) 38-53. [CrossRef] [MathSciNet] [Google Scholar]
  21. L. Le Cam, Metric dimension and statistical estimation, in Advances in mathematical sciences: CRM's 25 years. Montreal, PQ (1994) 303-311. [Google Scholar]
  22. G.G. Lorentz, Metric entropy and approximation. Bull. Amer. Math. Soc. 72 (1966) 903-937. [CrossRef] [MathSciNet] [Google Scholar]
  23. S.M. Nikolskii, Approximation of functions of several variables and imbedding theorems (Russian), Second Ed. Moskva, Nauka (1977). English translation of the first Ed., Berlin (1975). [Google Scholar]
  24. V.V. Petrov, Limit Theorems of Probability Theory: Sequences of independent Random Variables. Oxford University Press (1995). [Google Scholar]
  25. S.A. van de Geer, Empirical processes in M-estimation. Cambridge University Press (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.