Free Access
Volume 7, March 2003
Page(s) 219 - 238
Published online 15 May 2003
  1. A. Balkema and L. de Haan, Residual life time at a great age. Ann. Probab. 2 (1974) 792-801. [Google Scholar]
  2. J. Beirlant, G. Dierckx, Y. Goegebeur and G. Matthys, Tail index estimation and an exponential regression model. Extremes 2 (1999) 177-200. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.P. Cohen, Convergence rates for the ultimate and penultimate approximations in extreme-value theory. Adv. Appl. Prob. 14 (1982) 833-854. [CrossRef] [Google Scholar]
  4. A.L.M. Dekkers and L. de Haan, On the estimation of the extreme-value index and large quantile estimation. Ann. Statist. 17 (1989) 1795-1832. [CrossRef] [MathSciNet] [Google Scholar]
  5. J. Diebolt, V. Durbec, M.A. El Aroui and B. Villain, Estimation of extreme quantiles: Empirical tools for methods assessment and comparison. Int. J. Reliability Quality Safety Engrg. 7 (2000) 75-94. [CrossRef] [Google Scholar]
  6. J. Diebolt and M.A. El Aroui, On the use of Peaks over Threshold methods for estimating out-of-sample quantiles. Comput. Statist. Data Anal. (to appear). [Google Scholar]
  7. H. Drees, A general class of estimators of the extreme value index. J. Statist. Plann. Inf. 66 (1998) 95-112. [CrossRef] [Google Scholar]
  8. U. Einmahl and D.M. Mason, Approximation to permutation and exchangeable processes. J. Theor. Probab. 5 (1992) 101-126. [CrossRef] [Google Scholar]
  9. A. Feuerverger and P. Hall, Estimating a tail exponent by modelling departure from a Pareto distribution. Ann. Statist. 27 (1999) 760-781. [CrossRef] [MathSciNet] [Google Scholar]
  10. J. Galambos, Asymptotic theory of extreme order statistics. Krieger, Malabar, Florida (1978). [Google Scholar]
  11. B.V. Gnedenko, Sur la distribution limite du terme maximum d'une série aléatoire. Ann. Math. 44 (1943) 423-453. [CrossRef] [Google Scholar]
  12. M.I. Gomes, Penultimate limiting forms in extreme value theory. Ann. Inst. Stat. Math. 36 (1984) 71-85. [CrossRef] [Google Scholar]
  13. I. Gomes and L. de Haan, Approximation by penultimate extreme value distributions. Extremes 2 (2000) 71-85. [CrossRef] [Google Scholar]
  14. M.I. Gomes and D.D. Pestana, Non standard domains of attraction and rates of convergence. John Wiley & Sons (1987) 467-477. [Google Scholar]
  15. L. de Haan and H. Rootzén, On the estimation of high quantiles. J. Statist. Plann. Infer. 35 (1993) 1-13. [CrossRef] [Google Scholar]
  16. J. Hosking and J. Wallis, Parameter and quantile estimation for the Generalized Pareto Distribution. Technometrics 29 (1987) 339-349. [CrossRef] [MathSciNet] [Google Scholar]
  17. J. Pickands III, Statistical inference using extreme order statistics. Ann. Statist. 3 (1975) 119-131. [Google Scholar]
  18. G.R. Shorack and J.A. Wellner, Empirical Processes with Applications to Statistics. Wiley, New York (1986). [Google Scholar]
  19. R.L. Smith, Estimating tails of probability distributions. Ann. Statist. 15 (1987) 1174-1207. [CrossRef] [MathSciNet] [Google Scholar]
  20. R. Worms, Vitesses de convergence pour l'approximation des queues de distributions. Thèse de doctorat de l'Université de Marne-la-Vallée (2000). [Google Scholar]
  21. R. Worms, Penultimate approximation for the distribution of the excesses. ESAIM: P&S 6 (2002) 21-31. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.