Volume 6, 2002
New directions in Time Series Analysis (Guest Editor: Philippe Soulier)
Page(s) 293 - 309
Section New directions in Time Series Analysis (Guest Editor: Philippe Soulier)
Published online 15 November 2002
  1. M.A. Arcones, Distributional limit theorems over a stationary Gaussian sequence of random vectors. Stochastic Process. Appl. 88 (2000) 135-159. [CrossRef] [MathSciNet]
  2. J.-M. Bardet, G. Lang, G. Oppenheim, A. Philippe and M.S. Taqqu, Generators of long-range processes: A survey, in Long range dependence: Theory and applications, edited by P. Doukhan, G. Oppenheim and M.S. Taqqu (to appear).
  3. P. Billingsley, Convergence of Probability measures. Wiley (1968).
  4. S. Csörgo and J. Mielniczuk, The empirical process of a short-range dependent stationary sequence under Gaussian subordination. Probab. Theory Related Fields 104 (1996) 15-25. [CrossRef] [MathSciNet]
  5. H. Dehling and M.S. Taqqu, The empirical process of some long-range dependent sequences with an application to U-statistics. Ann. Statist. 4 (1989) 1767-1783. [CrossRef]
  6. H. Dehling and M.S. Taqqu, Bivariate symmetric statistics of long-range dependent observations. J. Statist. Plann. Inference 28 (1991) 153-165. [CrossRef] [MathSciNet]
  7. R.L. Dobrushin and P. Major, Non central limit theorems for non-linear functionals of Gaussian fields. Z. Wahrsch. Verw. Geb. 50 (1979) 27-52. [CrossRef] [MathSciNet]
  8. P. Doukhan and S. Louhichi, A new weak dependence condition and applications to moment inequalities. Stochastic Process Appl. 84 (1999) 313-342. [CrossRef] [MathSciNet]
  9. P. Doukhan and D. Surgailis, Functional central limit theorem for the empirical process of short memory linear processes. C. R. Acad. Sci. Paris Sér. I Math. 326 (1997) 87-92.
  10. J. Ghosh, A new graphical tool to detect non normality. J. Roy. Statist. Soc. Ser. B 58 (1996) 691-702. [MathSciNet]
  11. L. Giraitis, Convergence of certain nonlinear transformations of a Gaussian sequence to self-similar process. Lithuanian Math. J. 23 (1983) 58-68.
  12. L. Giraitis and R. Leipus, A generalized fractionally differencing approach in long-memory modeling. Lithuanian Math. J. 35 (1995) 65-81. [MathSciNet]
  13. L. Giraitis and D. Surgailis Central limit theorem for the empirical process of a linear sequence with long memory. J. Statist. Plann. Inference 80 (1999) 81-93.
  14. I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series and products. Jeffrey A. 5th Edition. Academic Press (1994).
  15. H.C. Ho and T. Hsing, On the asymptotic expansion of the empirical process of long memory moving averages. Ann. Statist. 24 (1996) 992-1024. [CrossRef] [MathSciNet]
  16. I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus. Springer-Verlag, New York (1988).
  17. R. Leipus and M.-C. Viano, Modeling long-memory time series with finite or infinite variance: A general approach. J. Time Ser. Anal. 21 (1997) 61-74. [CrossRef]
  18. C. Newman, Asymptotic independence and limit theorems for positively and negatively dependent random variables. IMS Lecture Notes-Monographs Ser. 5 (1984) 127-140. [CrossRef]
  19. G. Oppenheim, M. Ould Haye and M.-C. Viano, Long memory with seasonal effects. Statist. Inf. Stoch. Proc. 3 (2000) 53-68. [CrossRef]
  20. M. Ould Haye, Longue mémoire saisonnière et convergence vers le processus de Rosenblatt. Pub. IRMA, Lille, 50-VIII (1999).
  21. M. Ould Haye, Asymptotic behavior of the empirical process for seasonal long-memory data. Pub. IRMA, Lille, 53-V (2000).
  22. M. Ould Haye and M.-C. Viano, Limit theorems under seasonal long-memory, in Long range dependence: Theory and applications, edited by P. Doukhan, G. Oppenheim and M.S. Taqqu (to appear).
  23. D.W. Pollard, Convergence of Stochastic Processes. Springer, New York (1984).
  24. M. Rosenblatt, Limit theorems for transformations of functionals of Gaussian sequences. Z. Wahrsch. Verw. Geb. 55 (1981) 123-132. [CrossRef]
  25. Q. Shao and H. Yu, Weak convergence for weighted empirical process of dependent sequences. Ann. Probab. 24 (1996) 2094-2127.
  26. G.R. Shorack and J.A. Wellner, Empirical Processes with Applications to Statistics. Wiley, New York (1986).
  27. M.S. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Geb. 31 (1975) 287-302. [CrossRef]
  28. A. Zygmund, Trigonometric Series. Cambridge University Press (1959).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.