Issue
ESAIM: PS
Volume 6, 2002
New directions in Time Series Analysis (Guest Editor: Philippe Soulier)
Page(s) 293 - 309
Section New directions in Time Series Analysis (Guest Editor: Philippe Soulier)
DOI https://doi.org/10.1051/ps:2002016
Published online 15 November 2002
  1. M.A. Arcones, Distributional limit theorems over a stationary Gaussian sequence of random vectors. Stochastic Process. Appl. 88 (2000) 135-159. [CrossRef] [MathSciNet] [Google Scholar]
  2. J.-M. Bardet, G. Lang, G. Oppenheim, A. Philippe and M.S. Taqqu, Generators of long-range processes: A survey, in Long range dependence: Theory and applications, edited by P. Doukhan, G. Oppenheim and M.S. Taqqu (to appear). [Google Scholar]
  3. P. Billingsley, Convergence of Probability measures. Wiley (1968). [Google Scholar]
  4. S. Csörgo and J. Mielniczuk, The empirical process of a short-range dependent stationary sequence under Gaussian subordination. Probab. Theory Related Fields 104 (1996) 15-25. [CrossRef] [MathSciNet] [Google Scholar]
  5. H. Dehling and M.S. Taqqu, The empirical process of some long-range dependent sequences with an application to U-statistics. Ann. Statist. 4 (1989) 1767-1783. [CrossRef] [Google Scholar]
  6. H. Dehling and M.S. Taqqu, Bivariate symmetric statistics of long-range dependent observations. J. Statist. Plann. Inference 28 (1991) 153-165. [CrossRef] [MathSciNet] [Google Scholar]
  7. R.L. Dobrushin and P. Major, Non central limit theorems for non-linear functionals of Gaussian fields. Z. Wahrsch. Verw. Geb. 50 (1979) 27-52. [Google Scholar]
  8. P. Doukhan and S. Louhichi, A new weak dependence condition and applications to moment inequalities. Stochastic Process Appl. 84 (1999) 313-342. [Google Scholar]
  9. P. Doukhan and D. Surgailis, Functional central limit theorem for the empirical process of short memory linear processes. C. R. Acad. Sci. Paris Sér. I Math. 326 (1997) 87-92. [Google Scholar]
  10. J. Ghosh, A new graphical tool to detect non normality. J. Roy. Statist. Soc. Ser. B 58 (1996) 691-702. [MathSciNet] [Google Scholar]
  11. L. Giraitis, Convergence of certain nonlinear transformations of a Gaussian sequence to self-similar process. Lithuanian Math. J. 23 (1983) 58-68. [Google Scholar]
  12. L. Giraitis and R. Leipus, A generalized fractionally differencing approach in long-memory modeling. Lithuanian Math. J. 35 (1995) 65-81. [MathSciNet] [Google Scholar]
  13. L. Giraitis and D. Surgailis Central limit theorem for the empirical process of a linear sequence with long memory. J. Statist. Plann. Inference 80 (1999) 81-93. [Google Scholar]
  14. I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series and products. Jeffrey A. 5th Edition. Academic Press (1994). [Google Scholar]
  15. H.C. Ho and T. Hsing, On the asymptotic expansion of the empirical process of long memory moving averages. Ann. Statist. 24 (1996) 992-1024. [CrossRef] [MathSciNet] [Google Scholar]
  16. I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus. Springer-Verlag, New York (1988). [Google Scholar]
  17. R. Leipus and M.-C. Viano, Modeling long-memory time series with finite or infinite variance: A general approach. J. Time Ser. Anal. 21 (1997) 61-74. [CrossRef] [Google Scholar]
  18. C. Newman, Asymptotic independence and limit theorems for positively and negatively dependent random variables. IMS Lecture Notes-Monographs Ser. 5 (1984) 127-140. [CrossRef] [Google Scholar]
  19. G. Oppenheim, M. Ould Haye and M.-C. Viano, Long memory with seasonal effects. Statist. Inf. Stoch. Proc. 3 (2000) 53-68. [CrossRef] [Google Scholar]
  20. M. Ould Haye, Longue mémoire saisonnière et convergence vers le processus de Rosenblatt. Pub. IRMA, Lille, 50-VIII (1999). [Google Scholar]
  21. M. Ould Haye, Asymptotic behavior of the empirical process for seasonal long-memory data. Pub. IRMA, Lille, 53-V (2000). [Google Scholar]
  22. M. Ould Haye and M.-C. Viano, Limit theorems under seasonal long-memory, in Long range dependence: Theory and applications, edited by P. Doukhan, G. Oppenheim and M.S. Taqqu (to appear). [Google Scholar]
  23. D.W. Pollard, Convergence of Stochastic Processes. Springer, New York (1984). [Google Scholar]
  24. M. Rosenblatt, Limit theorems for transformations of functionals of Gaussian sequences. Z. Wahrsch. Verw. Geb. 55 (1981) 123-132. [CrossRef] [Google Scholar]
  25. Q. Shao and H. Yu, Weak convergence for weighted empirical process of dependent sequences. Ann. Probab. 24 (1996) 2094-2127. [Google Scholar]
  26. G.R. Shorack and J.A. Wellner, Empirical Processes with Applications to Statistics. Wiley, New York (1986). [Google Scholar]
  27. M.S. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Geb. 31 (1975) 287-302. [Google Scholar]
  28. A. Zygmund, Trigonometric Series. Cambridge University Press (1959). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.