Volume 6, 2002
New directions in Time Series Analysis (Guest Editor: Philippe Soulier)
Page(s) 271 - 292
Section New directions in Time Series Analysis (Guest Editor: Philippe Soulier)
Published online 15 November 2002
  1. R.J. Carroll and P. Hall, Optimal rates of convergence for deconvolving a density. J. Amer. Statist. Assoc. 83 (1988) 1184-1186. [CrossRef] [MathSciNet] [Google Scholar]
  2. L. Devroye, Consistent deconvolution in density estimation. Canad. J. Statist. 17 (1989) 235-239. [CrossRef] [MathSciNet] [Google Scholar]
  3. J. Fan, Asymptotic normality for deconvolution kernel density estimators. Sankhya Ser. A 53 (1991) 97-110. [MathSciNet] [Google Scholar]
  4. J. Fan, Global behavior of deconvolution kernel estimates. Statist. Sinica 1 (1991) 541-551. [MathSciNet] [Google Scholar]
  5. J. Fan, On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19 (1991) 1257-1272. [CrossRef] [MathSciNet] [Google Scholar]
  6. J. Fan, Adaptively local one-dimensional subproblems with application to a deconvolution problem. Ann. Statist. 21 (1993) 600-610. [CrossRef] [MathSciNet] [Google Scholar]
  7. W. Feller, An introduction to probability theory and its applications, Vol. II. John Wiley & Sons Inc., New York (1971). [Google Scholar]
  8. R.D. Gill and B.Y. Levit, Applications of the Van Trees inequality: A Bayesian Cramér-Rao bound. Bernoulli 1 (1995) 59-79. [CrossRef] [MathSciNet] [Google Scholar]
  9. H. Ishwaran, Information in semiparametric mixtures of exponential families. Ann. Statist. 27 (1999) 159-177. [CrossRef] [MathSciNet] [Google Scholar]
  10. B.G. Lindsay, Exponential family mixture models (with least-squares estimators). Ann. Statist. 14 (1986) 124-137. [CrossRef] [MathSciNet] [Google Scholar]
  11. M.C. Liu and R.L. Taylor, A consistent nonparametric density estimator for the deconvolution problem. Canad. J. Statist. 17 (1989) 427-438. [CrossRef] [MathSciNet] [Google Scholar]
  12. C. Matias and M.-L. Taupin, Minimax estimation of some linear functionals in the convolution model, Manuscript. Université Paris-Sud (2001). [Google Scholar]
  13. P. Medgyessy, Decomposition of superposition of density functions on discrete distributions. II. Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 21 (1973) 261-382. [Google Scholar]
  14. M.H. Neumann, On the effect of estimating the error density in nonparametric deconvolution. J. Nonparametr. Statist. 7 (1997) 307-330. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Pensky and B. Vidakovic, Adaptive wavelet estimator for nonparametric density deconvolution. Ann. Statist. 27 (1999) 2033-2053. [CrossRef] [MathSciNet] [Google Scholar]
  16. L. Stefanski and R.J. Carroll, Deconvoluting kernel density estimators. Statistics 21 (1990) 169-184. [CrossRef] [MathSciNet] [Google Scholar]
  17. L.A. Stefanski, Rates of convergence of some estimators in a class of deconvolution problems. Statist. Probab. Lett. 9 (1990) 229-235. [CrossRef] [MathSciNet] [Google Scholar]
  18. M.L. Taupin. Semi-parametric estimation in the non-linear errors-in-variables model. Ann. Statist. 29 (2001) 66-93. [Google Scholar]
  19. A.W. van der Vaart, Asymptotic statistics. Cambridge University Press, Cambridge (1998). [Google Scholar]
  20. A.W. van der Vaart and J.A. Wellner, Weak convergence and empirical processes. Springer-Verlag, New York (1996). With applications to statistics. [Google Scholar]
  21. C.-H. Zhang, Fourier methods for estimating mixing densities and distributions. Ann. Statist. 18 (1990) 806-831. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.