Issue
ESAIM: PS
Volume 6, 2002
New directions in Time Series Analysis (Guest Editor: Philippe Soulier)
Page(s) 259 - 270
Section New directions in Time Series Analysis (Guest Editor: Philippe Soulier)
DOI https://doi.org/10.1051/ps:2002014
Published online 15 November 2002
  1. L.E. Baum and T. Petrie, Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Statist. 30 (1966) 1554-1563. [CrossRef] [MathSciNet]
  2. A. Berlinet, Estimation des degrés d'un ARMA multivarié, Pub. IRMA, Vol. 4. Lille (1982).
  3. P.J. Brockwell and R.A. Davis, Time Series: Theory and Methods. Springer-Verlag, New York (1991).
  4. C. Francq and J.-M. Zakoïan, Stationarity of Multivariate Markov-switching ARMA Models. J. Econometrics 102 (2001) 339-364. [CrossRef] [MathSciNet]
  5. J.D. Hamilton, A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57 (1989) 357-384. [CrossRef] [MathSciNet]
  6. J.D. Hamilton, Specification testing in Markov switching time series models. J. Econometrics 45 (1996) 39-70. [CrossRef] [MathSciNet]
  7. H. Karlsen, A class of non-linear time series models, Ph.D. Thesis. University of Bergen, Norway (1990).
  8. B.G. Leroux and L.M. Puterman, Maximum-penalized-likelihood estimation for independent and Markov-dependent mixture models. Biometrics 48 (1992) 545-558. [CrossRef] [PubMed]
  9. D.S. Poskitt and S.H. Chung, Markov chain models, time series analysis and extreme value theory. Adv. Appl. Probab. 28 (1996) 405-425. [CrossRef]
  10. C.P. Robert, T. Rydén and D.M. Titterington, Bayesian inference in hidden Markov models through the reversible jump Markov Chain Monte-Carlo method. J. Roy. Statist. Soc. B 62 (2000) 57-75. [CrossRef]
  11. T. Rydén, Estimating the orders of hidden Markov models. Statistics 26 (1995) 345-354. [CrossRef] [MathSciNet]
  12. J. Zhang and R.A. Stine, Autocovariance structure of Markov regime switching models and model selection. J. Time Ser. Anal. 22 (2001) 107-124. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.