Free Access
Issue
ESAIM: PS
Volume 5, 2001
Page(s) 77 - 104
DOI https://doi.org/10.1051/ps:2001103
Published online 15 August 2002
  1. P. Hall and C.C. Heyde, Martingale Limit Theory and its Applications. Academic Press, New York (1980). [Google Scholar]
  2. K.S. Alexander and R. Pyke, A uniform central limit theorem for set-indexed partial-sum processes with finite variance. Ann. Probab. 14 (1986) 582-597. [CrossRef] [MathSciNet] [Google Scholar]
  3. K. Azuma, Weighted sums of certain dependent random fields. Tôhoku Math. J. (2) 19 (1967) 357-367. [CrossRef] [Google Scholar]
  4. R.F. Bass, Law of the iterated logarithm for set-indexed partial sum processes with finite variance. Z. Wahrsch. Verw. Gebiete. 70 (1985) 591-608. [CrossRef] [MathSciNet] [Google Scholar]
  5. A.K. Basu and C.C.Y. Dorea, On functional central limit theorem for stationary martingale random fields. Acta Math. Hungar. 33 (1979) 307-316. [CrossRef] [Google Scholar]
  6. P.J. Bickel and M.J. Wichura, Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Statist. 42 (1971) 1656-1670. [CrossRef] [MathSciNet] [Google Scholar]
  7. R. Bradley, A caution on mixing conditions for random fields. Statist. Probab. Lett. 8 (1989) 489-491. [CrossRef] [MathSciNet] [Google Scholar]
  8. D. Chen, A uniform central limit theorem for nonuniform Φ-mixing random fields. Ann. Probab. 19 (1991) 636-649. [CrossRef] [MathSciNet] [Google Scholar]
  9. J. Dedecker, A central limit theorem for stationary random fields. Probab. Theory Related Fields 110 (1998) 397-426. [Google Scholar]
  10. J. Dedecker and E. Rio, On the functional central limit theorem for stationary processes. Ann. Inst. H. Poincaré Probab. Statist. 36 (2000) 1-34. [Google Scholar]
  11. R.L. Dobrushin, The description of a random field by means of conditional probabilities and conditions of its regularity. Theory Probab. Appl. 13 (1968) 197-224. [CrossRef] [Google Scholar]
  12. R.L. Dobrushin and S. Shlosman, constructive criterion for the uniqueness of Gibbs fields, Statistical physics and dynamical systems. Birkhauser (1985) 347-370. [Google Scholar]
  13. P. Doukhan, Mixing: Properties and Examples. Springer, Berlin, Lecture Notes in Statist. 85 (1994). [Google Scholar]
  14. P. Doukhan, J. León and F. Portal, Vitesse de convergence dans le théorème central limite pour des variables aléatoires mélangeantes à valeurs dans un espace de Hilbert. C. R. Acad. Sci. Paris Sér. I Math. 298 (1984) 305-308. [Google Scholar]
  15. R.M. Dudley, Sample functions of the Gaussian process. Ann. Probab. 1 (1973) 66-103. [CrossRef] [Google Scholar]
  16. C.M. Goldie and P.E. Greenwood, Variance of set-indexed sums of mixing random variables and weak convergence of set-indexed processes. Ann. Probab. 14 (1986) 817-839. [CrossRef] [MathSciNet] [Google Scholar]
  17. C.M. Goldie and G.J. Morrow, Central limit questions for random fields, Dependence in probability and statistics. Progr. Probab. Statist. 11 (1986) 275-289. [Google Scholar]
  18. Y. Higuchi, Coexistence of infinite (*)-clusters II. Ising percolation in two dimensions. Probab. Theory Related Fields 97 (1993) 1-33. [CrossRef] [MathSciNet] [Google Scholar]
  19. E. Laroche, Hypercontractivité pour des systèmes de spins de portée infinie. Probab. Theory Related Fields 101 (1995) 89-132. [CrossRef] [MathSciNet] [Google Scholar]
  20. M. Ledoux and M. Talagrand, Probability in Banach Spaces. Springer, New York (1991). [Google Scholar]
  21. P. Lezaud, Chernoff-type bound for finite Markov chains. Ann. Appl. Probab. 8 (1998) 849-867. [CrossRef] [MathSciNet] [Google Scholar]
  22. F. Martinelli and E. Olivieri, Approach to Equilibrium of Glauber Dynamics in the One Phase Region. I. The Attractive Case. Comm. Math. Phys. 161 (1994) 447-486. [CrossRef] [MathSciNet] [Google Scholar]
  23. M. Peligrad, A note on two measures of dependence and mixing sequences. Adv. in Appl. Probab. 15 (1983) 461-464. [CrossRef] [MathSciNet] [Google Scholar]
  24. G. Perera, Geometry of Formula and the central limit theorem for weakly dependent random fields. J. Theoret. Probab. 10 (1997). [Google Scholar]
  25. I.F. Pinelis, Optimum bounds for the distribution of martingales in Banach spaces. Ann. Probab. 22 (1994) 1679-1706. [CrossRef] [MathSciNet] [Google Scholar]
  26. E. Rio, Covariance inequalities for strongly mixing processes. Ann. Inst. H. Poincaré 29 (1993) 587-597. [Google Scholar]
  27. E. Rio, Théorèmes limites pour les suites de variables aléatoires faiblement dépendantes. Springer, Berlin, Collect. Math. Apll. 31 (2000). [Google Scholar]
  28. P.M. Samson, Inégalités de concentration de la mesure pour des chaînes de Markov et des processus Φ-mélangeants, Thèse de doctorat de l'université Paul Sabatier (1998). [Google Scholar]
  29. R.H. Schonmann and S.B. Shlosman, Complete Analyticity for 2D Ising Completed. Comm. Math. Phys. 170 (1995) 453-482. [Google Scholar]
  30. R.J. Serfling, Contributions to Central Limit Theory For Dependent Variables. Ann. Math. Statist. 39 (1968) 1158-1175. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.