Free Access
Issue
ESAIM: PS
Volume 5, 2001
Page(s) 51 - 76
DOI https://doi.org/10.1051/ps:2001102
Published online 15 August 2002
  1. A. Amroun, Systèmes dynamiques perturbés. Sur une classe de fonctions zéta dynamiques, Thèse de Doctorat de l'Université Paris 6, Spécialité Mathématique (1995). [Google Scholar]
  2. P. Ango Nze and P. Doukhan, Non-parametric Minimax estimation in a weakly dependent framework I: Quadratic properties. Math. Methods Statist. 5-4 (1996) 404-423. [Google Scholar]
  3. V. Baladi, M. Benedicks and V. Maume-Deschamps, Almost sure rates of mixing for i.i.d. unimodal maps. Ann. E.N.S. (to appear). [Google Scholar]
  4. A.D. Barbour, R.M. Gerrard and G. Reinert, Iterates of expanding maps. Probab. Theory Related Fields 116 (2000) 151-180. [Google Scholar]
  5. D. Bosq and D. Guégan, Nonparametric estimation of the chaotic function and the invariant measure of a dynamical system. Statist. Probab. Lett. 25 (1995) 201-212. [CrossRef] [MathSciNet] [Google Scholar]
  6. D. Bosq and J.P. Lecoutre, Théorie de l'estimation fonctionnelle. Collection ``Économie et statistiques avancées''. Série : École Nationale de la Statistique et de l'Administration Économique et Centre d'Études des Programmes Economiques''. Economica (1987). [Google Scholar]
  7. A. Broise, F. Dal'bo and M. Peigné, Études spectrales d'opérateurs de transfert et applications. Astérisque 238 (1996) Société‰ Math. de France. [Google Scholar]
  8. P. Collet, Some ergodic properties of maps of the interval, in dynamical systems, edited by R. Bamon, J.M. Gambaudo and S. Martinez. Hermann, Paris (1996). [Google Scholar]
  9. C. Coulon-Prieur and P. Doukhan, A triangular central limit Theorem under a new weak dependence condition. Statist. Probab. Lett. 47 (2000) 61-68. [CrossRef] [MathSciNet] [Google Scholar]
  10. W. De Melo and S. Van Strien, One-Dimensional Dynamics. Springer-Verlag (1993). [Google Scholar]
  11. P. Doukhan, Mixing: Properties and Examples. Springer Verlag, Lecture Notes in Statist. 85 (1994). [Google Scholar]
  12. P. Doukhan, Models, Inequalities and Limit Theorems for Stationary Sequences, edited by P. Doukhan, G. Oppenheim and M. Taqqu. Birkhaüser (to appear). [Google Scholar]
  13. P. Doukhan and S. Louhichi, A new weak dependence condition and applications to moment inequalities. Stochastic Process. Appl. 84 (1999) 313-342. [CrossRef] [MathSciNet] [Google Scholar]
  14. P. Doukhan and S. Louhichi, Functional estimation of a density under a new weak dependence condition. Scand. J. Statist. 28 (2001) 325-342. [CrossRef] [MathSciNet] [Google Scholar]
  15. A. Lasota and M. Mackey, Probabilistic properties of deterministic systems. Cambridge University Press (1985). [Google Scholar]
  16. A. Lasota and J.A. Yorke, On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1973) 481-488. [CrossRef] [MathSciNet] [Google Scholar]
  17. C. Liverani, Decay of correlations for piecewise expanding maps. J. Statist. Phys. 78 (1995) 1111-1129. [CrossRef] [MathSciNet] [Google Scholar]
  18. C. Liverani, Central limit Theorem for deterministic systems, in Proc. of the international Congress on Dynamical Systems, Montevideo 95. Pittman, Res. Notes Math. (1997). [Google Scholar]
  19. J. Maës, Statistique non paramétrique des processus dynamiques réels en temps discret. Thèse de l'Université Paris 6 (1999). [Google Scholar]
  20. D. Pollard, Convergence of Stochastic Processes. Springer Verlag, Springer Ser. Statist. (1984). [Google Scholar]
  21. R. Prakasa, Nonparametric functional estimation. Academic Press, New York (1983). [Google Scholar]
  22. E. Rio, About the Lindeberg method for strongly mixing sequences. ESAIM: PS 1 (1995) 35-61. [CrossRef] [EDP Sciences] [Google Scholar]
  23. E. Rio, Sur le théorème de Berry-Esseen pour les suites faiblement dépendantes. Probab. Theory Related Fields 104 (1996) 255-282. [CrossRef] [MathSciNet] [Google Scholar]
  24. P.M. Robinson, Non parametric estimators for time series. J. Time Ser. Anal. 4-3 (1983) 185-207. [CrossRef] [MathSciNet] [Google Scholar]
  25. M. Rosenblatt, Stochastic curve estimation, in NSF-CBMS Regional Conference Series in Probability and Statistics, Vol. 3 (1991). [Google Scholar]
  26. W. Rudin, Real and complex analysis. McGraw-Hill Series in Higher Mathematics, Second Edition (1974). [Google Scholar]
  27. M. Viana, Stochastic dynamics of deterministic systems, Instituto de Matematica Pura e Aplicada. IMPA, Vol. 21 (1997). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.