Free Access
Volume 3, 1999
Page(s) 107 - 129
Published online 15 August 2002
  1. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1972). [Google Scholar]
  2. R.J. Adler, An Introduction to Continuity, Extrema and Related Topics for General Gaussian Processes, IMS, Hayward, Ca (1990). [Google Scholar]
  3. J.-M. Azaïs and M. Wschebor, Une formule pour calculer la distribution du maximum d'un processus stochastique. C.R. Acad. Sci. Paris Ser. I Math. 324 (1997) 225-230. [Google Scholar]
  4. J-M. Azaïs and M. Wschebor, The Distribution of the Maximum of a Stochastic Process and the Rice Method, submitted. [Google Scholar]
  5. C. Cierco, Problèmes statistiques liés à la détection et à la localisation d'un gène à effet quantitatif. PHD dissertation. University of Toulouse, France (1996). [Google Scholar]
  6. C. Cierco and J.-M. Azaïs, Testing for Quantitative Gene Detection in Dense Map, submitted. [Google Scholar]
  7. H. Cramér and M.R. Leadbetter, Stationary and Related Stochastic Processes, J. Wiley & Sons, New-York (1967). [Google Scholar]
  8. D. Dacunha-Castelle and E. Gassiat, Testing in locally conic models, and application to mixture models. ESAIM: Probab. Statist. 1 (1997) 285-317. [Google Scholar]
  9. R.B. Davies, Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika 64 (1977) 247-254. [CrossRef] [MathSciNet] [Google Scholar]
  10. J. Ghosh and P. Sen, On the asymptotic performance of the log-likelihood ratio statistic for the mixture model and related results, in Proc. of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer, Le Cam L.M. and Olshen R.A., Eds. (1985). [Google Scholar]
  11. M.F. Kratz and H. Rootzén, On the rate of convergence for extreme of mean square differentiable stationary normal processes. J. Appl. Prob. 34 (1997) 908-923. [CrossRef] [Google Scholar]
  12. M.R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, New-York (1983). [Google Scholar]
  13. R.N. Miroshin, Rice series in the theory of random functions. Vestnik Leningrad Univ. Math. 1 (1974) 143-155. [Google Scholar]
  14. M.B. Monagan, et al. Maple V Programming guide. Springer (1998). [Google Scholar]
  15. V.I. Piterbarg, Comparison of distribution functions of maxima of Gaussian processes. Theory Probab. Appl. 26 (1981) 687-705. [Google Scholar]
  16. V.I. Piterbarg, Large deviations of random processes close to gaussian ones. Theory Probab. Appl. 27 (1982) 504-524. [CrossRef] [Google Scholar]
  17. V.I. Piterbarg, Asymptotic Methods in the Theory of Gaussian Processes and Fields. American Mathematical Society. Providence, Rhode Island (1996). [Google Scholar]
  18. S.O. Rice, Mathematical Analysis of Random Noise. Bell System Tech. J. 23 (1944) 282-332; 24 (1945) 45-156. [Google Scholar]
  19. SPLUS, Statistical Sciences, S-PLUS Programmer's Manual, Version 3.2, Seattle: StatSci, a division of MathSoft, Inc. (1993). [Google Scholar]
  20. J. Sun, Significance levels in exploratory projection pursuit. Biometrika 78 (1991) 759-769. [CrossRef] [MathSciNet] [Google Scholar]
  21. M. Wschebor, Surfaces aléatoires. Mesure géometrique des ensembles de niveau. Springer-Verlag, New-York, Lecture Notes in Mathematics 1147 (1985). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.