Free Access
Volume 3, 1999
Page(s) 89 - 106
Published online 15 August 2002
  1. R. Bellman, Introduction to matrix analysis. McGraw-Hill, London (1960).
  2. N. Bouleau and D. Lépingle, Numerical methods for stochastic processes. Wiley, New York (1994).
  3. E. Çinlar, Introduction to stochastic processes. Prentice Hall, New York (1975).
  4. P. Diaconis, The cutoff phenomenon in finite Markov chains. Proc. Natl. Acad. Sci. USA 93 (1996) 1659-1664. [CrossRef]
  5. P. Diaconis, R. Graham and J. Morrison, Asymptotic analysis of a random walk on a hypercube with many dimensions. Rand. Struct. Algorithms 1 (1990) 51-72. [CrossRef]
  6. P. Diaconis and M. Shahshahani, Time to reach stationarity in the Bernoulli-Laplace diffusion model. SIAM J. Math. Anal. 18 (1987) 208-218. [CrossRef] [MathSciNet]
  7. P. Doukhan, Mixing, properties and examples. Springer-Verlag, New York, Lecture Notes en Statist. 85 (1994).
  8. W. Feller, An introduction to probability theory and its applications, Vol. I. Wiley, London (1968).
  9. G.S. Fishman, Monte-Carlo concepts algorithms and applications. Springer-Verlag, New York (1996).
  10. E. Giné, Lectures on some aspects of the bootstrap, P. Bernard, Ed., École d'été de probabilités de Saint-Flour XXVI, Springer-Verlag, New York, Lectures Notes in Math. 1664 (1997) 37-151.
  11. J. Keilson, Markov chain models - rarity and exponentiality. Springer-Verlag, New York. Appl. Math. Sci. 28 (1979).
  12. A.W. Massey, Stochastic orderings for Markov processes on partially ordered spaces. Math. Oper. Research 12 (1987) 350-367. [CrossRef] [MathSciNet]
  13. P. Mathé, Relaxation of product Markov chains on product spaces. Preprint WIAS, Berlin (1997).
  14. A.E. Raftery and S. Lewis, Implementing MCMC, W.R. Gilks, S.T. Richardson and D.J. Spiegelhalter, Eds., Markov Chain Monte-Carlo in practice, Chapman and Hall, London (1992) 115-130.
  15. C.P. Robert, Méthodes de Monte-Carlo par chaînes de Markov. Economica, Paris (1996).
  16. L. Saloff-Coste, Lectures on finite Markov chains, P. Bernard, Ed., École d'été de probabilités de Saint-Flour XXVI, Springer-Verlag, New York, Lecture Notes in Math. 1664 (1997) 301-413.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.