Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

When ecological individual heterogeneity models and large data collide: An importance sampling approach

Ruth King, Blanca Sarzo and Víctor Elvira
The Annals of Applied Statistics 17 (4) (2023)
https://doi.org/10.1214/23-AOAS1753

Transport Map Accelerated Adaptive Importance Sampling, and Application to Inverse Problems Arising from Multiscale Stochastic Reaction Networks

Simon L. Cotter, Ioannis G. Kevrekidis and Paul T. Russell
SIAM/ASA Journal on Uncertainty Quantification 8 (4) 1383 (2020)
https://doi.org/10.1137/19M1239416

Consistency of adaptive importance sampling and recycling schemes

Jean-Michel Marin, Pierre Pudlo and Mohammed Sedki
Bernoulli 25 (3) (2019)
https://doi.org/10.3150/18-BEJ1042

Ensemble Transport Adaptive Importance Sampling

Colin Cotter, Simon Cotter and Paul Russell
SIAM/ASA Journal on Uncertainty Quantification 7 (2) 444 (2019)
https://doi.org/10.1137/17M1114867

Finite Gaussian Mixture Approximations to Analytically Intractable Density Kernels

Natalia Khorunzhina and Jean-François Richard
Computational Economics 53 (3) 991 (2019)
https://doi.org/10.1007/s10614-017-9777-2

Generalized Multiple Importance Sampling

Víctor Elvira, Luca Martino, David Luengo and Mónica F. Bugallo
Statistical Science 34 (1) (2019)
https://doi.org/10.1214/18-STS668

Bayesian online regression for adaptive direct illumination sampling

Petr Vévoda, Ivo Kondapaneni and Jaroslav Křivánek
ACM Transactions on Graphics 37 (4) 1 (2018)
https://doi.org/10.1145/3197517.3201340

Multiple importance sampling characterization by weighted mean invariance

Mateu Sbert, Vlastimil Havran, László Szirmay-Kalos and Víctor Elvira
The Visual Computer 34 (6-8) 843 (2018)
https://doi.org/10.1007/s00371-018-1522-x

Adaptive multiple importance sampling for Gaussian processes

Xiaoyu Xiong, Václav Šmídl and Maurizio Filippone
Journal of Statistical Computation and Simulation 87 (8) 1644 (2017)
https://doi.org/10.1080/00949655.2017.1280037

Combining multiple surrogate models to accelerate failure probability estimation with expensive high-fidelity models

Benjamin Peherstorfer, Boris Kramer and Karen Willcox
Journal of Computational Physics 341 61 (2017)
https://doi.org/10.1016/j.jcp.2017.04.012

Improving population Monte Carlo: Alternative weighting and resampling schemes

Víctor Elvira, Luca Martino, David Luengo and Mónica F. Bugallo
Signal Processing 131 77 (2017)
https://doi.org/10.1016/j.sigpro.2016.07.012

Adaptive Importance Sampling: The past, the present, and the future

Monica F. Bugallo, Victor Elvira, Luca Martino, et al.
IEEE Signal Processing Magazine 34 (4) 60 (2017)
https://doi.org/10.1109/MSP.2017.2699226

Multifidelity importance sampling

Benjamin Peherstorfer, Tiangang Cui, Youssef Marzouk and Karen Willcox
Computer Methods in Applied Mechanics and Engineering 300 490 (2016)
https://doi.org/10.1016/j.cma.2015.12.002

Algorithmic Advances in Riemannian Geometry and Applications

Shiwei Lan and Babak Shahbaba
Advances in Computer Vision and Pattern Recognition, Algorithmic Advances in Riemannian Geometry and Applications 25 (2016)
https://doi.org/10.1007/978-3-319-45026-1_2

An Adaptive Population Importance Sampler: Learning From Uncertainty

Luca Martino, Victor Elvira, David Luengo and Jukka Corander
IEEE Transactions on Signal Processing 63 (16) 4422 (2015)
https://doi.org/10.1109/TSP.2015.2440215

Unscented importance sampling for parameter calibration of carbon sequestration systems

Mirhamed Sarkarfarshi and Robert Gracie
Stochastic Environmental Research and Risk Assessment 29 (3) 975 (2015)
https://doi.org/10.1007/s00477-014-0963-7

Efficient Multiple Importance Sampling Estimators

Victor Elvira, Luca Martino, David Luengo and Monica F. Bugallo
IEEE Signal Processing Letters 22 (10) 1757 (2015)
https://doi.org/10.1109/LSP.2015.2432078

NASA Uncertainty Quantification Challenge: An Optimization-Based Methodology and Validation

Anirban Chaudhuri, Garrett Waycaster, Nathaniel Price, Taiki Matsumura and Raphael T. Haftka
Journal of Aerospace Information Systems 12 (1) 10 (2015)
https://doi.org/10.2514/1.I010269

Globally Adaptive Control Variate for Robust Numerical Integration

Anthony Pajot, Loïc Barthe and Mathias Paulin
SIAM Journal on Scientific Computing 36 (4) A1708 (2014)
https://doi.org/10.1137/130937846

Quantitative approximations of evolving probability measures and sequential Markov chain Monte Carlo methods

Andreas Eberle and Carlo Marinelli
Probability Theory and Related Fields 155 (3-4) 665 (2013)
https://doi.org/10.1007/s00440-012-0410-y

Population Monte Carlo Algorithm in High Dimensions

Jeong Eun Lee, Ross McVinish and Kerrie Mengersen
Methodology and Computing in Applied Probability 13 (2) 369 (2011)
https://doi.org/10.1007/s11009-009-9154-2

Joint Model Selection and Parameter Estimation by Population Monte Carlo Simulation

Mingyi Hong, Monica F Bugallo and Petar M Djuric
IEEE Journal of Selected Topics in Signal Processing 4 (3) 526 (2010)
https://doi.org/10.1109/JSTSP.2010.2048385

Use in practice of importance sampling for repeated MCMC for Poisson models

Dorota Gajda, Chantal Guihenneuc-Jouyaux, Judith Rousseau, Kerry Mengersen and Darfiana Nur
Electronic Journal of Statistics 4 (none) (2010)
https://doi.org/10.1214/09-EJS527

On variance stabilisation in Population Monte Carlo by double Rao-Blackwellisation

Alessandra Iacobucci, Jean-Michel Marin and Christian Robert
Computational Statistics & Data Analysis 54 (3) 698 (2010)
https://doi.org/10.1016/j.csda.2008.09.020

Machine Learning and Knowledge Discovery in Databases

Odalric-Ambrym Maillard and Rémi Munos
Lecture Notes in Computer Science, Machine Learning and Knowledge Discovery in Databases 6322 305 (2010)
https://doi.org/10.1007/978-3-642-15883-4_20

Adaptive importance sampling in general mixture classes

Olivier Cappé, Randal Douc, Arnaud Guillin, Jean-Michel Marin and Christian P. Robert
Statistics and Computing 18 (4) 447 (2008)
https://doi.org/10.1007/s11222-008-9059-x