The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
R. Douc , A. Guillin , J.-M. Marin , C. P. Robert
ESAIM: PS, 11 (2007) 427-447
Published online: 2007-08-17
This article has been cited by the following article(s):
51 articles
When ecological individual heterogeneity models and large data collide: An importance sampling approach
Ruth King, Blanca Sarzo and Víctor Elvira The Annals of Applied Statistics 17 (4) (2023) https://doi.org/10.1214/23-AOAS1753
Population Quasi-Monte Carlo
Chaofan Huang, V. Roshan Joseph and Simon Mak Journal of Computational and Graphical Statistics 31 (3) 695 (2022) https://doi.org/10.1080/10618600.2022.2034637
Fernando Llorente, Ernesto Curbelo, Luca Martino, Pablo Olmos and David Delgado 2021 (2022) https://doi.org/10.23919/EUSIPCO55093.2022.9909576
SPCBPT
Fujia Su, Sheng Li and Guoping Wang ACM Transactions on Graphics 41 (4) 1 (2022) https://doi.org/10.1145/3528223.3530183
Importance Gaussian Quadrature
Victor Elvira, Luca Martino and Pau Closas IEEE Transactions on Signal Processing 69 474 (2021) https://doi.org/10.1109/TSP.2020.3045526
Hamiltonian Adaptive Importance Sampling
Ali Mousavi, Reza Monsefi and Victor Elvira IEEE Signal Processing Letters 28 713 (2021) https://doi.org/10.1109/LSP.2021.3068616
Safe adaptive importance sampling: A mixture approach
Bernard Delyon and François Portier The Annals of Statistics 49 (2) (2021) https://doi.org/10.1214/20-AOS1983
Víctor Elvira and Luca Martino 1 (2021) https://doi.org/10.1002/9781118445112.stat08284
Transport Map Accelerated Adaptive Importance Sampling, and Application to Inverse Problems Arising from Multiscale Stochastic Reaction Networks
Simon L. Cotter, Ioannis G. Kevrekidis and Paul T. Russell SIAM/ASA Journal on Uncertainty Quantification 8 (4) 1383 (2020) https://doi.org/10.1137/19M1239416
An Introduction to Sequential Monte Carlo
Nicolas Chopin and Omiros Papaspiliopoulos Springer Series in Statistics, An Introduction to Sequential Monte Carlo 329 (2020) https://doi.org/10.1007/978-3-030-47845-2_17
Yousef El-Laham, Luca Martino, Victor Elvira and Monica F. Bugallo 1 (2019) https://doi.org/10.23919/EUSIPCO.2019.8902642
Consistency of adaptive importance sampling and recycling schemes
Jean-Michel Marin, Pierre Pudlo and Mohammed Sedki Bernoulli 25 (3) (2019) https://doi.org/10.3150/18-BEJ1042
Ensemble Transport Adaptive Importance Sampling
Colin Cotter, Simon Cotter and Paul Russell SIAM/ASA Journal on Uncertainty Quantification 7 (2) 444 (2019) https://doi.org/10.1137/17M1114867
Finite Gaussian Mixture Approximations to Analytically Intractable Density Kernels
Natalia Khorunzhina and Jean-François Richard Computational Economics 53 (3) 991 (2019) https://doi.org/10.1007/s10614-017-9777-2
Generalized Multiple Importance Sampling
Víctor Elvira, Luca Martino, David Luengo and Mónica F. Bugallo Statistical Science 34 (1) (2019) https://doi.org/10.1214/18-STS668
Bayesian online regression for adaptive direct illumination sampling
Petr Vévoda, Ivo Kondapaneni and Jaroslav Křivánek ACM Transactions on Graphics 37 (4) 1 (2018) https://doi.org/10.1145/3197517.3201340
Multiple importance sampling characterization by weighted mean invariance
Mateu Sbert, Vlastimil Havran, László Szirmay-Kalos and Víctor Elvira The Visual Computer 34 (6-8) 843 (2018) https://doi.org/10.1007/s00371-018-1522-x
Adaptive multiple importance sampling for Gaussian processes
Xiaoyu Xiong, Václav Šmídl and Maurizio Filippone Journal of Statistical Computation and Simulation 87 (8) 1644 (2017) https://doi.org/10.1080/00949655.2017.1280037
Layered adaptive importance sampling
L. Martino, V. Elvira, D. Luengo and J. Corander Statistics and Computing 27 (3) 599 (2017) https://doi.org/10.1007/s11222-016-9642-5
Combining multiple surrogate models to accelerate failure probability estimation with expensive high-fidelity models
Benjamin Peherstorfer, Boris Kramer and Karen Willcox Journal of Computational Physics 341 61 (2017) https://doi.org/10.1016/j.jcp.2017.04.012
Optimization and Automation of the Construction of Smooth Free Energy Profiles
Jeremy Schofield The Journal of Physical Chemistry B 121 (28) 6847 (2017) https://doi.org/10.1021/acs.jpcb.7b04871
Improving population Monte Carlo: Alternative weighting and resampling schemes
Víctor Elvira, Luca Martino, David Luengo and Mónica F. Bugallo Signal Processing 131 77 (2017) https://doi.org/10.1016/j.sigpro.2016.07.012
Adaptive Importance Sampling: The past, the present, and the future
Monica F. Bugallo, Victor Elvira, Luca Martino, et al. IEEE Signal Processing Magazine 34 (4) 60 (2017) https://doi.org/10.1109/MSP.2017.2699226
Adaptive multiple importance sampling for general functions
Mateu Sbert and Vlastimil Havran The Visual Computer 33 (6-8) 845 (2017) https://doi.org/10.1007/s00371-017-1398-1
Multifidelity importance sampling
Benjamin Peherstorfer, Tiangang Cui, Youssef Marzouk and Karen Willcox Computer Methods in Applied Mechanics and Engineering 300 490 (2016) https://doi.org/10.1016/j.cma.2015.12.002
Finite Gaussian Mixture Approximations to Analytically Intractable Density Kernels
Natalia Khorunzhina SSRN Electronic Journal (2016) https://doi.org/10.2139/ssrn.2803514
Monica F. Bugallo, Victor Elvira and Luca Martino 1540 (2016) https://doi.org/10.1109/ACSSC.2016.7869636
Algorithmic Advances in Riemannian Geometry and Applications
Shiwei Lan and Babak Shahbaba Advances in Computer Vision and Pattern Recognition, Algorithmic Advances in Riemannian Geometry and Applications 25 (2016) https://doi.org/10.1007/978-3-319-45026-1_2
An Adaptive Population Importance Sampler: Learning From Uncertainty
Luca Martino, Victor Elvira, David Luengo and Jukka Corander IEEE Transactions on Signal Processing 63 (16) 4422 (2015) https://doi.org/10.1109/TSP.2015.2440215
Adaptive importance sampling in signal processing
Mónica F. Bugallo, Luca Martino and Jukka Corander Digital Signal Processing 47 36 (2015) https://doi.org/10.1016/j.dsp.2015.05.014
Unscented importance sampling for parameter calibration of carbon sequestration systems
Mirhamed Sarkarfarshi and Robert Gracie Stochastic Environmental Research and Risk Assessment 29 (3) 975 (2015) https://doi.org/10.1007/s00477-014-0963-7
Victor Elvira, Luca Martino, David Luengo and Jukka Corander 4075 (2015) https://doi.org/10.1109/ICASSP.2015.7178737
Efficient Multiple Importance Sampling Estimators
Victor Elvira, Luca Martino, David Luengo and Monica F. Bugallo IEEE Signal Processing Letters 22 (10) 1757 (2015) https://doi.org/10.1109/LSP.2015.2432078
NASA Uncertainty Quantification Challenge: An Optimization-Based Methodology and Validation
Anirban Chaudhuri, Garrett Waycaster, Nathaniel Price, Taiki Matsumura and Raphael T. Haftka Journal of Aerospace Information Systems 12 (1) 10 (2015) https://doi.org/10.2514/1.I010269
Globally Adaptive Control Variate for Robust Numerical Integration
Anthony Pajot, Loïc Barthe and Mathias Paulin SIAM Journal on Scientific Computing 36 (4) A1708 (2014) https://doi.org/10.1137/130937846
An Adaptive Sequential Monte Carlo Sampler
Paul Fearnhead and Benjamin M. Taylor Bayesian Analysis 8 (2) (2013) https://doi.org/10.1214/13-BA814
Quantitative approximations of evolving probability measures and sequential Markov chain Monte Carlo methods
Andreas Eberle and Carlo Marinelli Probability Theory and Related Fields 155 (3-4) 665 (2013) https://doi.org/10.1007/s00440-012-0410-y
Handbook of Computational Statistics
Christian P. Robert Handbook of Computational Statistics 751 (2012) https://doi.org/10.1007/978-3-642-21551-3_26
Adaptive Multiple Importance Sampling
JEAN‐MARIE CORNUET, JEAN‐MICHEL MARIN, ANTONIETTA MIRA and CHRISTIAN P. ROBERT Scandinavian Journal of Statistics 39 (4) 798 (2012) https://doi.org/10.1111/j.1467-9469.2011.00756.x
Bingxin Shen, Monica F. Bugallo and Petar M. Djuric 3861 (2012) https://doi.org/10.1109/ICASSP.2012.6288760
A Survey of Sequential Monte Carlo Methods for Economics and Finance
Drew Creal Econometric Reviews 31 (3) 245 (2012) https://doi.org/10.1080/07474938.2011.607333
Jeong E. Lee, Kerrie L. Mengersen and Christian P. Robert 403 (2012) https://doi.org/10.1002/9781118394472.ch24
Adaptive importance sampling for network growth models
Adam N. Guetz and Susan P. Holmes Annals of Operations Research 189 (1) 187 (2011) https://doi.org/10.1007/s10479-010-0685-2
Population Monte Carlo Algorithm in High Dimensions
Jeong Eun Lee, Ross McVinish and Kerrie Mengersen Methodology and Computing in Applied Probability 13 (2) 369 (2011) https://doi.org/10.1007/s11009-009-9154-2
Joint Model Selection and Parameter Estimation by Population Monte Carlo Simulation
Mingyi Hong, Monica F Bugallo and Petar M Djuric IEEE Journal of Selected Topics in Signal Processing 4 (3) 526 (2010) https://doi.org/10.1109/JSTSP.2010.2048385
Use in practice of importance sampling for repeated MCMC for Poisson models
Dorota Gajda, Chantal Guihenneuc-Jouyaux, Judith Rousseau, Kerry Mengersen and Darfiana Nur Electronic Journal of Statistics 4 (none) (2010) https://doi.org/10.1214/09-EJS527
On variance stabilisation in Population Monte Carlo by double Rao-Blackwellisation
Alessandra Iacobucci, Jean-Michel Marin and Christian Robert Computational Statistics & Data Analysis 54 (3) 698 (2010) https://doi.org/10.1016/j.csda.2008.09.020
Machine Learning and Knowledge Discovery in Databases
Odalric-Ambrym Maillard and Rémi Munos Lecture Notes in Computer Science, Machine Learning and Knowledge Discovery in Databases 6322 305 (2010) https://doi.org/10.1007/978-3-642-15883-4_20
Adaptive importance sampling in general mixture classes
Olivier Cappé, Randal Douc, Arnaud Guillin, Jean-Michel Marin and Christian P. Robert Statistics and Computing 18 (4) 447 (2008) https://doi.org/10.1007/s11222-008-9059-x
Convergence of adaptive mixtures of importance sampling schemes
R. Douc, A. Guillin, J.-M. Marin and C. P. Robert The Annals of Statistics 35 (1) (2007) https://doi.org/10.1214/009053606000001154
On population-based simulation for static inference
Ajay Jasra, David A. Stephens and Christopher C. Holmes Statistics and Computing 17 (3) 263 (2007) https://doi.org/10.1007/s11222-007-9028-9