The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
R. Douc , A. Guillin , J.-M. Marin , C. P. Robert
ESAIM: PS, 11 (2007) 427-447
Published online: 2007-08-17
This article has been cited by the following article(s):
54 articles
Insight from the Kullback–Leibler divergence into adaptive importance sampling schemes for rare event analysis in high dimension
Jason Beh, Yonatan Shadmi and Florian Simatos The Annals of Applied Probability 35 (2) (2025) https://doi.org/10.1214/24-AAP2136
Accelerating HEP simulations with Neural Importance Sampling
Nicolas Deutschmann and Niklas Götz Journal of High Energy Physics 2024 (3) (2024) https://doi.org/10.1007/JHEP03(2024)083
An adaptive mixture view of particle filters
Nicola Branchini and Víctor Elvira Foundations of Data Science (2024) https://doi.org/10.3934/fods.2024017
When ecological individual heterogeneity models and large data collide: An importance sampling approach
Ruth King, Blanca Sarzo and Víctor Elvira The Annals of Applied Statistics 17 (4) (2023) https://doi.org/10.1214/23-AOAS1753
SPCBPT
Fujia Su, Sheng Li and Guoping Wang ACM Transactions on Graphics 41 (4) 1 (2022) https://doi.org/10.1145/3528223.3530183
Fernando Llorente, Ernesto Curbelo, Luca Martino, Pablo Olmos and David Delgado 2021 (2022) https://doi.org/10.23919/EUSIPCO55093.2022.9909576
Population Quasi-Monte Carlo
Chaofan Huang, V. Roshan Joseph and Simon Mak Journal of Computational and Graphical Statistics 31 (3) 695 (2022) https://doi.org/10.1080/10618600.2022.2034637
Víctor Elvira and Luca Martino 1 (2021) https://doi.org/10.1002/9781118445112.stat08284
Importance Gaussian Quadrature
Victor Elvira, Luca Martino and Pau Closas IEEE Transactions on Signal Processing 69 474 (2021) https://doi.org/10.1109/TSP.2020.3045526
Safe adaptive importance sampling: A mixture approach
Bernard Delyon and François Portier The Annals of Statistics 49 (2) (2021) https://doi.org/10.1214/20-AOS1983
Hamiltonian Adaptive Importance Sampling
Ali Mousavi, Reza Monsefi and Victor Elvira IEEE Signal Processing Letters 28 713 (2021) https://doi.org/10.1109/LSP.2021.3068616
An Introduction to Sequential Monte Carlo
Nicolas Chopin and Omiros Papaspiliopoulos Springer Series in Statistics, An Introduction to Sequential Monte Carlo 329 (2020) https://doi.org/10.1007/978-3-030-47845-2_17
Transport Map Accelerated Adaptive Importance Sampling, and Application to Inverse Problems Arising from Multiscale Stochastic Reaction Networks
Simon L. Cotter, Ioannis G. Kevrekidis and Paul T. Russell SIAM/ASA Journal on Uncertainty Quantification 8 (4) 1383 (2020) https://doi.org/10.1137/19M1239416
Ensemble Transport Adaptive Importance Sampling
Colin Cotter, Simon Cotter and Paul Russell SIAM/ASA Journal on Uncertainty Quantification 7 (2) 444 (2019) https://doi.org/10.1137/17M1114867
Yousef El-Laham, Luca Martino, Victor Elvira and Monica F. Bugallo 1 (2019) https://doi.org/10.23919/EUSIPCO.2019.8902642
Finite Gaussian Mixture Approximations to Analytically Intractable Density Kernels
Natalia Khorunzhina and Jean-François Richard Computational Economics 53 (3) 991 (2019) https://doi.org/10.1007/s10614-017-9777-2
Consistency of adaptive importance sampling and recycling schemes
Jean-Michel Marin, Pierre Pudlo and Mohammed Sedki Bernoulli 25 (3) (2019) https://doi.org/10.3150/18-BEJ1042
Generalized Multiple Importance Sampling
Víctor Elvira, Luca Martino, David Luengo and Mónica F. Bugallo Statistical Science 34 (1) (2019) https://doi.org/10.1214/18-STS668
Multiple importance sampling characterization by weighted mean invariance
Mateu Sbert, Vlastimil Havran, László Szirmay-Kalos and Víctor Elvira The Visual Computer 34 (6-8) 843 (2018) https://doi.org/10.1007/s00371-018-1522-x
Bayesian online regression for adaptive direct illumination sampling
Petr Vévoda, Ivo Kondapaneni and Jaroslav Křivánek ACM Transactions on Graphics 37 (4) 1 (2018) https://doi.org/10.1145/3197517.3201340
Layered adaptive importance sampling
L. Martino, V. Elvira, D. Luengo and J. Corander Statistics and Computing 27 (3) 599 (2017) https://doi.org/10.1007/s11222-016-9642-5
Adaptive multiple importance sampling for Gaussian processes
Xiaoyu Xiong, Václav Šmídl and Maurizio Filippone Journal of Statistical Computation and Simulation 87 (8) 1644 (2017) https://doi.org/10.1080/00949655.2017.1280037
Improving population Monte Carlo: Alternative weighting and resampling schemes
Víctor Elvira, Luca Martino, David Luengo and Mónica F. Bugallo Signal Processing 131 77 (2017) https://doi.org/10.1016/j.sigpro.2016.07.012
Optimization and Automation of the Construction of Smooth Free Energy Profiles
Jeremy Schofield The Journal of Physical Chemistry B 121 (28) 6847 (2017) https://doi.org/10.1021/acs.jpcb.7b04871
Combining multiple surrogate models to accelerate failure probability estimation with expensive high-fidelity models
Benjamin Peherstorfer, Boris Kramer and Karen Willcox Journal of Computational Physics 341 61 (2017) https://doi.org/10.1016/j.jcp.2017.04.012
Adaptive Importance Sampling: The past, the present, and the future
Monica F. Bugallo, Victor Elvira, Luca Martino, et al. IEEE Signal Processing Magazine 34 (4) 60 (2017) https://doi.org/10.1109/MSP.2017.2699226
Adaptive multiple importance sampling for general functions
Mateu Sbert and Vlastimil Havran The Visual Computer 33 (6-8) 845 (2017) https://doi.org/10.1007/s00371-017-1398-1
Algorithmic Advances in Riemannian Geometry and Applications
Shiwei Lan and Babak Shahbaba Advances in Computer Vision and Pattern Recognition, Algorithmic Advances in Riemannian Geometry and Applications 25 (2016) https://doi.org/10.1007/978-3-319-45026-1_2
Monica F. Bugallo, Victor Elvira and Luca Martino 1540 (2016) https://doi.org/10.1109/ACSSC.2016.7869636
Multifidelity importance sampling
Benjamin Peherstorfer, Tiangang Cui, Youssef Marzouk and Karen Willcox Computer Methods in Applied Mechanics and Engineering 300 490 (2016) https://doi.org/10.1016/j.cma.2015.12.002
Finite Gaussian Mixture Approximations to Analytically Intractable Density Kernels
Natalia Khorunzhina SSRN Electronic Journal (2016) https://doi.org/10.2139/ssrn.2803514
Victor Elvira, Luca Martino, David Luengo and Jukka Corander 4075 (2015) https://doi.org/10.1109/ICASSP.2015.7178737
Adaptive importance sampling in signal processing
Mónica F. Bugallo, Luca Martino and Jukka Corander Digital Signal Processing 47 36 (2015) https://doi.org/10.1016/j.dsp.2015.05.014
Unscented importance sampling for parameter calibration of carbon sequestration systems
Mirhamed Sarkarfarshi and Robert Gracie Stochastic Environmental Research and Risk Assessment 29 (3) 975 (2015) https://doi.org/10.1007/s00477-014-0963-7
Efficient Multiple Importance Sampling Estimators
Victor Elvira, Luca Martino, David Luengo and Monica F. Bugallo IEEE Signal Processing Letters 22 (10) 1757 (2015) https://doi.org/10.1109/LSP.2015.2432078
NASA Uncertainty Quantification Challenge: An Optimization-Based Methodology and Validation
Anirban Chaudhuri, Garrett Waycaster, Nathaniel Price, Taiki Matsumura and Raphael T. Haftka Journal of Aerospace Information Systems 12 (1) 10 (2015) https://doi.org/10.2514/1.I010269
An Adaptive Population Importance Sampler: Learning From Uncertainty
Luca Martino, Victor Elvira, David Luengo and Jukka Corander IEEE Transactions on Signal Processing 63 (16) 4422 (2015) https://doi.org/10.1109/TSP.2015.2440215
Globally Adaptive Control Variate for Robust Numerical Integration
Anthony Pajot, Loïc Barthe and Mathias Paulin SIAM Journal on Scientific Computing 36 (4) A1708 (2014) https://doi.org/10.1137/130937846
Quantitative approximations of evolving probability measures and sequential Markov chain Monte Carlo methods
Andreas Eberle and Carlo Marinelli Probability Theory and Related Fields 155 (3-4) 665 (2013) https://doi.org/10.1007/s00440-012-0410-y
An Adaptive Sequential Monte Carlo Sampler
Paul Fearnhead and Benjamin M. Taylor Bayesian Analysis 8 (2) (2013) https://doi.org/10.1214/13-BA814
Bingxin Shen, Monica F. Bugallo and Petar M. Djuric 3861 (2012) https://doi.org/10.1109/ICASSP.2012.6288760
Jeong E. Lee, Kerrie L. Mengersen and Christian P. Robert 403 (2012) https://doi.org/10.1002/9781118394472.ch24
A Survey of Sequential Monte Carlo Methods for Economics and Finance
Drew Creal Econometric Reviews 31 (3) 245 (2012) https://doi.org/10.1080/07474938.2011.607333
Handbook of Computational Statistics
Christian P. Robert Handbook of Computational Statistics 751 (2012) https://doi.org/10.1007/978-3-642-21551-3_26
Adaptive Multiple Importance Sampling
JEAN‐MARIE CORNUET, JEAN‐MICHEL MARIN, ANTONIETTA MIRA and CHRISTIAN P. ROBERT Scandinavian Journal of Statistics 39 (4) 798 (2012) https://doi.org/10.1111/j.1467-9469.2011.00756.x
Population Monte Carlo Algorithm in High Dimensions
Jeong Eun Lee, Ross McVinish and Kerrie Mengersen Methodology and Computing in Applied Probability 13 (2) 369 (2011) https://doi.org/10.1007/s11009-009-9154-2
Adaptive importance sampling for network growth models
Adam N. Guetz and Susan P. Holmes Annals of Operations Research 189 (1) 187 (2011) https://doi.org/10.1007/s10479-010-0685-2
On variance stabilisation in Population Monte Carlo by double Rao-Blackwellisation
Alessandra Iacobucci, Jean-Michel Marin and Christian Robert Computational Statistics & Data Analysis 54 (3) 698 (2010) https://doi.org/10.1016/j.csda.2008.09.020
Use in practice of importance sampling for repeated MCMC for Poisson models
Dorota Gajda, Chantal Guihenneuc-Jouyaux, Judith Rousseau, Kerry Mengersen and Darfiana Nur Electronic Journal of Statistics 4 (none) (2010) https://doi.org/10.1214/09-EJS527
Machine Learning and Knowledge Discovery in Databases
Odalric-Ambrym Maillard and Rémi Munos Lecture Notes in Computer Science, Machine Learning and Knowledge Discovery in Databases 6322 305 (2010) https://doi.org/10.1007/978-3-642-15883-4_20
Joint Model Selection and Parameter Estimation by Population Monte Carlo Simulation
Mingyi Hong, Monica F Bugallo and Petar M Djuric IEEE Journal of Selected Topics in Signal Processing 4 (3) 526 (2010) https://doi.org/10.1109/JSTSP.2010.2048385
Adaptive importance sampling in general mixture classes
Olivier Cappé, Randal Douc, Arnaud Guillin, Jean-Michel Marin and Christian P. Robert Statistics and Computing 18 (4) 447 (2008) https://doi.org/10.1007/s11222-008-9059-x
Convergence of adaptive mixtures of importance sampling schemes
R. Douc, A. Guillin, J.-M. Marin and C. P. Robert The Annals of Statistics 35 (1) (2007) https://doi.org/10.1214/009053606000001154
On population-based simulation for static inference
Ajay Jasra, David A. Stephens and Christopher C. Holmes Statistics and Computing 17 (3) 263 (2007) https://doi.org/10.1007/s11222-007-9028-9