Open Access
Issue
ESAIM: PS
Volume 28, 2024
Page(s) 274 - 291
DOI https://doi.org/10.1051/ps/2024008
Published online 09 September 2024
  1. C.D. Lai and M. Xie, Stochastic Ageing and Dependence for Reliability. Springer Science and Business Media, New York (2006). [Google Scholar]
  2. M. Shaked and J.G. Shanthikumar, Stochastic Orders. Springer-Verlag, New York (2007). [CrossRef] [Google Scholar]
  3. T. Lando, I. Arab and P.E. Oliviera, Properties of increasing odds rate distributions with a statistical application. J. Statist. Plann. Inference 221 (2022) 313–325. [CrossRef] [MathSciNet] [Google Scholar]
  4. P. Hall and I. Van Keilegom, Testing for monotone increasing hazard rate. Ann. Statist. 33 (2005) 1109–1137. [MathSciNet] [Google Scholar]
  5. T. Lando, Testing departures from the increasing hazard rate property. Statist. Probab. Lett. 193 (2023) 109736. [CrossRef] [Google Scholar]
  6. H. El Barmi and I.W. McKeague, Testing for uniform stochastic ordering via empirical likelihood. Ann. Inst. Statist. Math. 68 (2016) 955–976. [CrossRef] [MathSciNet] [Google Scholar]
  7. T. Lando, A test for the increasing log-odds rate family. Statist. Probab. Lett. 170 (2021) 109017. [CrossRef] [Google Scholar]
  8. T. Lando, I. Arab and P.E. Oliviera, Nonparametric inference about increasing odds rate distributions. J. Nonparametric Statist. (2023) https://doi.org/10.1080/10485252.2023.2220050. [Google Scholar]
  9. H.A. David and H.N. Nagaraja, Order Statistics, 3rd edn. John Wiley and Sons, Hoboken, New Jersey (2003). [CrossRef] [Google Scholar]
  10. J. Bartoszewicz, A note on dispersive ordering defined by hazard functions. Statist. Probab. Lett. 6 (1987) 13–17. [CrossRef] [MathSciNet] [Google Scholar]
  11. J. Navarro, Y. Aguila, M.A. Sordo and A. Suarez-Llorens, Stochastic ordering properties for systems with dependent identically distributed components. Appl. Stochastic Models Business Ind. 29 (2013) 264–278. [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Belzunce, T. Hu and B.-E. Khaledi, Dispersion-type variability orders. Probab. Eng. Inform. Sci. 17 (2003) 305–334. [CrossRef] [Google Scholar]
  13. R.E. Barlow and F. Proschan, Statistical Theory of Reliability and Life Testing: Probability Models. Holt, Rinehart, and Winston, New York (1975). [Google Scholar]
  14. V. Kalashnikov and S.T. Rachev, Characterization of queueing models and their stability. Probab. Theory Math. Statist. 2 (1986) 37–53. [Google Scholar]
  15. D. Sengupta and J.V. Deshpande, Some results on the relative ageing of two life distributions. J. Appl. Probab. 31 (1994) 991–1003. [CrossRef] [MathSciNet] [Google Scholar]
  16. J.Y. Dauxois and S.N.U.A. Kirmani, Testing the proportional odds model under random censoring. Biometrika 90 (2003) 913–922. [CrossRef] [MathSciNet] [Google Scholar]
  17. E.L. Lehmann, Elements of Large-Sample Theory. Springer-Verlag, New York, Inc. (1999). [CrossRef] [Google Scholar]
  18. V. Zardasht, On nonparametric test for the residual probability order. Commun. Statist. Simul. Computat. 48 (2019) 1840–1848. [CrossRef] [Google Scholar]
  19. D.G. Hoel, A represwntation of mortality data by competing risks. Biometrika 28 (1972) 475–488. [CrossRef] [Google Scholar]
  20. J.V. Deshpande and D. Sengupta, Testing the hypothesis of proportional hazards in two populations. Biometrika 82 (1995) 251–261. [CrossRef] [Google Scholar]
  21. N.N. Unnikrishnan, P.G. Sankaran and N. Balakrishnan, Quantile-Based Reliability Analysis. Springer Science and Business Media, New York (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.