Open Access
Volume 28, 2024
Page(s) 132 - 160
Published online 30 April 2024
  1. F. Cérou and A. Guyader, Nearest neighbor classification in infinite dimension. ESAIM Probab. Stat. 10 (2006) 340–355. [Google Scholar]
  2. D. Preiss, Dimension of metrics and differentiation of measures. General topology and its relations to modern analysis and algebra, V (Prague, 1981). Heldermann, Berlin. Sigma Ser. Pure Math. 3 (1983) 565–568. [Google Scholar]
  3. J.I. Nagata, On a special metric and dimension. Fund. Math. 55 (1964) 181–194. [Google Scholar]
  4. P.A. Ostrand, A conjecture of J. Nagata on dimension and metrization. Bull. Amer. Math. Soc. 71 (1965) 623–625. [Google Scholar]
  5. B. Collins, S. Kumari and V.G. Pestov, Universal consistency of the k-NN rule in metric spaces and Nagata dimension. ESAIM Probab. Stat. 24 (2020) 914–934. [Google Scholar]
  6. C. Stone, Consistent nonparametric regression. Ann. Stat. 5 (1977) 595–645. [Google Scholar]
  7. P. Assouad and T. Quentin de Gromard, Recouvrements, derivation des mesures et dimensions. Rev. Mat. Iberoam. 22 (2006) 893–953. [Google Scholar]
  8. A. Korányi and H.M. Reimann, Foundations for the theory of quasiconformal mappings on the Heisenberg group. Adv. Math. 111 (1995) 1–87. [Google Scholar]
  9. E. Sawyer and R.L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Amer. J. Math. 114 (1992) 813–874. [Google Scholar]
  10. L. Devroye and L. Györfi, Nonparametric Density Estimation. The L1 View. John Wiley & Sons, New York (1985). [Google Scholar]
  11. L.C. Zhao, Exponential bounds of mean error for the nearest neighbor estimates of regression functions. J. Multivariate Anal. 21 (1987) 168–178. [Google Scholar]
  12. L. Devroye, L. Györfi and G. Lugosi, A Probabilistic Theory of Pattern Recognition. Springer-Verlag, New York (1996). [Google Scholar]
  13. S. Kumari, Topics in Random Matrices and Statistical Machine Learning, Ph.D. thesis, Kyoto University, 2018, 125 pp. [Google Scholar]
  14. L. Devroye, L. Györfi A. Krzyżak and G. Lugosi, On the strong universal consistency of nearest neighbor regression function estimates. Ann. Statist. 22 (1994) 1371–1385. [Google Scholar]
  15. D.H. Fremlin, Measure Theory. Vol. 2. Broad Foundations, corrected second printing of the 2001 original, Torres Fremlin, Colchester (2003) 563+12 pp. (errata). [Google Scholar]
  16. D. Preiss, Invalid Vitali theorems, in Abstracta. 7th Winter School on Abstract Analysis. Czechoslovak Academy of Sciences (1979) 58–60. [Google Scholar]
  17. L. Devroye, Necessary and sufficient conditions for the pointwise convergence of nearest neighbor regression function estimates. Z. Wahrsch. Verw. Gebiete 61 (1982) 467–481. [Google Scholar]
  18. J. de Groot, On a metric that characterizes dimension. Can. J. Math. 9 (1957) 511–514. [Google Scholar]
  19. J. Cygan, Subadditivity of homogeneous norms on certain nilpotent Lie groups. Proc. Amer. Math. Soc. 83 (1981) 69–70. [Google Scholar]
  20. A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Amer. Math. Soc. 258 (1980) 147–153. [Google Scholar]
  21. E. Le Donne, A primer on Carnot groups: homogenous groups, Carnot-Carathéodory spaces, and regularity of their isometries. Anal. Geom. Metr. Spaces 5 (2017) 116–137. [Google Scholar]
  22. R.A. Martínez Muñoz, Novas regras de aprendizagem supervisionada utilizando a estrutura dos números p-ádicos [New supervised learning rules using the p-adic numbers structure (in Portuguese)], Ph.D. thesis, Federal University of Santa Catarina, Florianópolis, Brazil, November 2023, 189 pp., [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.