Open Access
Volume 27, 2023
Page(s) 1 - 18
Published online 06 January 2023
  1. D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators. Volume 348 of Grundlehren Der Mathematischen Wissenschaften. Springer International Publishing, Cham (2014). [CrossRef] [Google Scholar]
  2. P. Billingsley, Convergence of Probability Measures. Wiley Series in Probability and Statistics. Probability and Statistics Section. Wiley, 2nd edn (1999). [Google Scholar]
  3. S.G. Bobkov, Isoperimetric and Analytic Inequalities for Log-Concave Probability Measures. Ann. Probab. 27 (1999) 1903-1921. [CrossRef] [MathSciNet] [Google Scholar]
  4. L. Béthencourt. Stable limit theorems for additive functionals of one dimensional diffusion processes. (2021) arXiv:2104.06027. [Google Scholar]
  5. P. Cattiaux, D. Chafai and S. Motsch, Asymptotic analysis and diffusion limit of the Persistent Turning Walker Model. Asympt. Anal. 67 (2010) 17-31. [Google Scholar]
  6. P. Cattiaux, E. Nasreddine and M. Puel, Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: The critical case. Kinetic Related Models 12 (2019) 727-748. [CrossRef] [MathSciNet] [Google Scholar]
  7. T. Cavallazzi and E. Luirard. Scaling limit of a kinetic inhomogeneous stochastic system in the quadratic potential. (2022) arXiv:2206.13276. [Google Scholar]
  8. R. Eon and M. Gradinaru, Gaussian asymptotics for a non-linear Langevin type equation driven by an o-stable lévy noise. Electr. J. Probab. 20 (2015) 1-19. [Google Scholar]
  9. N. Fournier and C. Tardif, One dimensional critical Kinetic Fokker-Planck equations, Bessel and stable processes. Commun. Math. Phys. 381 (2021) 143-173. [CrossRef] [Google Scholar]
  10. M. Gradinaru and E. Luirard, Kinetic time-inhomogeneous léevy-driven model. (2022) arXiv:2112.07287. [Google Scholar]
  11. M. Gradinaru and Y. Offret, Existence and asymptotic behaviour of some time-inhomogeneous diffusions. Ann. Inst. H. Poincaré Probab. Statist. 49 (2013) 182-207. [CrossRef] [Google Scholar]
  12. O. Kallenberg, Foundations of Modern Probability. Probability and Its Applications. Springer New York, New York, NY (2002). [CrossRef] [Google Scholar]
  13. I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics. Springer-Verlag, New York, second edition (1998). [Google Scholar]
  14. E. Luirard, Loi Limite de Modèles Cinétiques Inhomogènes En Temps. PhD thesis (2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.